HamCation 2022

This post will be updated with information leading up to and throughout the event. Thank you to HamCation for the support and opportunity.

Tucson Amateur Packet Radio

Booth, prototypes, forum presentation, give-aways, and more!

Society of Amateur Radio Astronomers

Forum presentation.

M17 Project

Booth, forum presentations, give-aways, and more!

Open Research Institute

Booth, demonstration reports, give-aways, sales, and more!

ARRL Technology Track

Talk by Michelle Thompson W5NYV.

Abstract:

Digital communications technology is large interdisciplinary field that incorporates some of the most fundamental scientific advancements of the past 120 years.

From the first spark gap transmitters, to telegraph, to the transistor, to the fast fourier transform, to the tape drive, to telnet, to touchscreens and trace routes, trackballs and telecommunications of all sorts, digital transmission of everyday information has revolutionized the way we communicate with each other, the way we store data, and the way we process that data to create things of greater and greater value.

This talk is about how information travels over the air in ways relevant to motivated amateur radio enthusiasts.

Digital communications is a difficult subject. This talk is simplified, but definitely not dumbed down. You will leave this session with a greater intuitive understanding of how digital communications works.

There’s a vibrant community and growing body of work in open source amateur radio digital communications for space and terrestrial work. The talk will close with a brief summary of open source digital communications work at Open Research Institute, Inc., a 501(c)(3) dedicated to open source work for amateur radio and beyond.

2021 Retrospective

Greeting all, and welcome to the close of 2021 at ORI.

For a high-level summary of what Open Research Institute is and what we have been up to, please watch the very short video presented at Open Source Cubesat Workshop 2021. The recording of the talk is here: https://youtu.be/VG9-Mc1Hn4A

If you would like to keep up with what we do, then subscribing to our mailing list and YouTube channel helps in several ways. More people find out about what we do because our work will get recommended more often to new people, and you get notifications of new content when it’s published.

Please visit https://www.youtube.com/c/OpenResearchInstituteInc/featured and subscribe to YouTube.

Please visit https://www.openresearch.institute/getting-started/ for information on joining the mailing list and Slack.

Join Phase 4 Ground Trello board:
https://trello.com/invite/b/REasyYiZ/8de4c059e252c7c435a1dafa25f655a8/phase-4-ground

Join Phase 4 Space Trello board:
https://trello.com/invite/b/GRBWasqW/1336a1fa5b88b380c27ccf95d21fec79/phase-4-space

We have other social media accounts as well (Twitter, Instagram, FaceBook) and we gratefully accept help and support there too. Want to be part of the social media team? Write ori at openresearch dot institute to apply.

https://twitter.com/OpenResearchIns
https://www.facebook.com/openresearchinstitute
https://www.instagram.com/open_research_institute/

Here are our challenges and successes from the past year and what we’re looking forward to in 2022. There’s a lot going on here and some of the things we are facing are not fun. Some of the discussion is political and tedious. We have some decisions that have been made and some big ones to make for 2022 and beyond. Your opinions matter. Comment and critique welcome and encouraged.

First and foremost, we thank the individuals and organizations that have made our work possible. Funding comes from YASME Foundation, ARRL Foundation, ARDC Foundation, Free Software Foundation, our Trans-Ionospheric and JoCo Badge projects, proceeds from the Gold Medal Ideas ORI store, and people like you.

2021 Retrospective

We are a research institution. We are not a ham radio club. Our primary focus is to carry out open source work for the amateur radio space and terrestrial bands. We expect this work to be used by amateur radio groups that execute and operate designs in space and on earth. This expectation has not been met in some of the ways we anticipated, but we have a broad path forward, a lot of things going very well, and we are going to take full advantage of all the positive developments over the past year in every way we can.

This next part is not the most fun story to write or read, but there’s a lot of very good lessons learned here, and it needs to be put in one place so that our amateur satellite volunteers know about it and can find it.

One can skip ahead (by clicking here) to “Successes in 2021” further down the page to get straight to technical progress.

When we say we expected our work to be used by amateur satellite groups, we assumed this meant AMSAT. Primarily AMSAT-NA, but we are also here to serve AMSAT-DL, AMSAT-UK, and so on. ORI is an AMSAT Member Society, and has showed preparation, enthusiasm, and experience through continued contributions to the amateur satellite community. ORI volunteers have professional, academic, and amateur experience with collectively at least a couple dozen payloads in orbit, ranging from GEO commercial to LEO amateur. A very large fraction of our volunteers are new to amateur radio. They have never volunteered for AMSAT or any other legacy satellite group before. Other volunteers have experience with AMSAT but no current role because of the politics of AMSAT-NA GOLF. I can say without any reservation that there is no loss of capability to any AMSAT organization from ORI activity. We have always encouraged volunteering for and membership within whatever AMSAT organization is nearest to you. It’s not just supportive words, but actions as well. We have sold AMSAT-NA memberships at numerous events over the years. We have actively promoted TAPR, AMSAT, ARRL, and other amateur groups at every opportunity. We’ve happily worked with TAPR and ARRL to great positive effect.

We have achieved some truly significant wins in the regulatory sphere with ITAR/EAR and Debris Mitigation, have groundbreaking success in P4DX comms development, and have one of the very few functional advanced communications research remote access lab benches in existence. We have expanded the AmbaSat Inspired Sensors project to move the AmbaSat to 70cm in anticipation of sounding rocket and space tests, have fully supported M17 Development and Deployment, and have proposed an employment program to ARDC to directly confront the problem with open source burnout in DSP/FPGA open source amateur designs.

We really do not suck.

However, despite all this good work, AMSAT-NA leadership, including senior officers, have consistently and publicly described ORI as “grifters” and “thieves” and “frauds”. Officers of AMSAT-NA have said we are “undeserving of any community support” and have taken actions to try and make this opinion a reality. It hasn’t worked, but these aggressively provocative and negative public posts from AMSAT-NA officers and members about ORI are clearly intended to harm. The attacks date back to 2018. ORI has not responded to any of this. However, ignoring it doesn’t make it go away, and participants in ORI need to know what’s being said and done.

ORI has had work censored from AMSAT publications and events. An ITAR/EAR update article submitted in October 2021 was removed before publication. According to the editor, this was the first time ever an article had been censored in the AMSAT Journal. The article had been requested by the editor and is in the draft of that issue of the Journal. It was personally squashed by the AMSAT President after the draft Journal was sent out. Several presentations and some papers were ordered to be eliminated at the last minute from 2020 AMSAT Symposium. The work had been welcomed by the submissions chair. This exclusion was unprecedented as well.

This sort of bizarre censorship has no place in amateur radio. Our disappointment with these decisions has been communicated to the editor of AMSAT Journal and the submissions chair for AMSAT Symposium.

For 2021, ORI co-hosted a half-day conference in collaboration with IEEE. This Information Theory Space and Satellite Symposium was successful, got great reviews, and IEEE has asked several times if ORI would be willing to organize something like this again. This gave us a chance to present some of the sort of work that we think should be part of AMSAT Symposium.

You can find the event recordings here: https://www.youtube.com/playlist?list=PLSfJ4B57S8DnhlrRya50IxGP90_uGpiho

Why do we care about any of this grumpy opposition? Why be concerned about censorship from a relatively small event or newsletter?

Because AMSAT-NA is presumed to be the primary advocacy group for amateur satellite activity in the United States. Because we want all AMSAT organizations to be successful. Because AMSAT and ARISS-USA have claimed that they are gatekeepers for amateur radio access to NASA. Because AMSAT-NA currently controls access to things like IARU committees for Region 2. Because AMSAT-NA gets irate when anyone else meets with the FCC on behalf of the amateur satellite service, but will not present anything outside of internal AMSAT-NA interests.

We care about this because ORI showed up and contributed within the AMSAT framework in good faith.

AMSAT-NA is, to be blunt, supposed to help us do exactly what we are doing. We are not a “threat”. We are not “thieves”. We are not “grifters”. We are not “frauds”. We don’t “siphon technical members away”. We are not “an embarrassment”. We deserve absolutely none of this sort of thing. We have invited AMSAT-NA to participate in every single major endeavor that we have carried out and accomplished. This inclusive and cooperative spirit has not been reciprocated.

Tacit acceptance of this sort of behavior is the real embarrassment.

For 2022, we will (of course) continue to utilize the amateur radio bands. All radio work will directly benefit amateur radio terrestrial and space. There will be no loss of opportunities or restrictions of goals for technical work. However, our associations and attention moving forward will focus on communities and organizations that share basic values with ORI. There will be some changes as we adapt, evolve, and grow. We can’t afford to spend time trying to work with organizations completely out of step with open source amateur satellite work, no matter how famous, wealthy, or historical they happen to be.

Successes in 2021

There is a lot of good news here.

Both the San Diego Microwave Group and the San Bernardino Microwave Society have been actively supportive and provided material assistance, volunteer time, and expert advice that we simply would not have received anywhere else. We would not have had a successful meeting with the FCC about Debris Mitigation without the support from members of these two radio clubs. Members generously offered their time, input, and guidance. All the regulatory work can be found here: https://github.com/phase4ground/documents/tree/master/Regulatory

Based on this meeting, we had a series of Orbit Workshops in November 2021. Recordings posted to the debris mitigation channel on our Slack.

The ITAR CJ Request work was funded through a grant from ARDC. The EAR Classification, successful Advisory Opinion Letter from Commerce, FAQ, and “How to use this work” flow graph were paid for with a loan to ORI. The process to fundraise to pay back this loan is underway. The final amount for EAR/Advisory Opinion/FAQ/Flowgraph is $14,425.00 Similar to the ITAR CJ Request work, this amount is substantially less than initial estimates. Credit goes to excellent counsel at Thomsen and Burke LLP and a motivated volunteer team at ORI that handled as many of the preparations as possible. Active sustained involvement reduced costs and increased competence and awareness of the many legal issues we were dealing with.

For 2022, we have two legal efforts that we are considering becoming involved with. Fundraising for those efforts will happen in advance of the work. This is a change from how we did the ITAR/EAR legal work, where fundraising was done after the legal work was completed.

We would not have had a successful multi-media beacon demonstration without support and advice from Kerry Banke and Ron Economos. A video presentation of this work can be found at https://youtu.be/vjfRI1w_dSs?t=609 and documentation can be found here: https://github.com/phase4ground/documents/tree/master/Engineering/Transmitters/DVB-S2-Multimedia-Beacon

This work is presented as a terrestrial beacon, but is also the default digital download for the P4DX transponder payload.

The payload work is currently focused on producing an FGPA-based end-to-end over-the-air demonstration. There are multiple repositories. The best way to get an overview of this work is either through the README.md files in the repos at https://github.com/phase4ground and https://github.com/phase4space.

If reviewing source code and block diagrams is not your thing, then watch the introduction of this video: https://youtu.be/fCmzS6jBhHg followed by the most recent Technical Advisory Committee meeting here: https://youtu.be/V2BlIp7XYMM

Thomas Parry is the Primary Investigator and lead the TAC meeting. Wally Ritchie (SK) was the previous and founding Primary Investigator, and he presented the overview in the design review linked above.

P4DX is our digital multiplexing microwave amateur band transverter. The native digital uplink is M17 FDMA and the downlink is TDM DVB-S2/X. A high-level architectural paper can be found here: https://github.com/phase4ground/documents/tree/master/Engineering/Requirements/Architecture

One of the current roadblocks with the end-to-end demo is a necessary expansion of capability in Remote Labs West. In order to use the Analog Devices ADRV9371 RFIC development board, we can get by with using an SD card image in the FPGA development station. However, this requires a lot of manual intervention, so booting the filesystem over NFS is an obvious improvement. This turned out to be impossible because the kernel from Analog Devices does not appear to support NFS. So, we’re fixing it and will (assuming success) submit whatever capabilities we add to the kernel back to Analog Devices. In the meantime, integration of the various bodies of FGPA code continues. Immediately following the NFS boot addition is DVB-S2/X verification station bring-up, in anticipation of being able to test what comes out of the ADRV9371. That’s just one example of the type of work that has had to happen all year in order to get things done.

Remote Labs have become much more than a “wear item” along the way. Once it became clear that the internet-accessible lab benches had potential to support a much wider variety of projects than just P4DX, volunteers started putting time into making sure they were as easy to use as possible. You can find out more about what Remote Labs are and how they work by going here: https://github.com/phase4ground/documents/tree/master/Remote_Labs

Remote Labs East (Florida) equipment has been moved to Remote Labs South (Arkansas). The move was necessary due to the untimely death of Wally Ritchie in July 2021. The new site will need additional funding to complete that Florida did not require. A grant application was made to ARDC in late August 2021 for this work. Remote Labs South will also have additional capabilities for bacteriophage and interferometry work. Both are open source efforts.

There is a backup bridge funding plan to get the lab bench at Remote Lab South operational. We can temporarily divert funds allocated to P4DX for FPGA software licenses, as the floating license approach has worked out well for us. The original budget planned for 10 node-locked licenses as those were the type of licenses we have received as an organization in the past. With only 1 floating license required for work so far, this leaves some margin in the budget. This is enough margin to develop Remote Labs South infrastructure while waiting for a response about funding from ARDC, without further delaying deployment of this lab.

Remote Labs are a good example of the frugality, public science orientation, and opportunistic spirit of ORI volunteers. We look forward to many years of making the equipment available to the open source community. We could use your help in spreading the word about this asset.

HamCation and Ham Expo have been invaluable. The staff and volunteers have been friendly, supportive, and creative. We are looking forward to HamCation 2022. If all goes well this will be our first in-person event most of us have been able to attend in quite a while. We have a booth in our usual spot. M17 Project and TAPR are on either side, and the large Society for Amateur Radio Astronomy booth is on the other side of TAPR. DATV is in the same row. ARRL will have a large presence. We have a lot of forum time and plenty to talk about. Returning to in-person events is a big step and there is extra stress, risk, and planning involved. If you are willing to be part of HamCation, please get in touch and we will add you to the planning spreadsheet and discussions.

IEEE Computer Society, Information Theory Society, and Signals and Systems have been incredibly supportive. As mentioned above, in 2021, ORI co-hosted a half-day conference in collaboration with IEEE. This Information Theory Space and Satellite Symposium was successful, got great reviews, and IEEE has asked several times if ORI would be willing to organize something like this again.

You can find the event recordings here: https://www.youtube.com/playlist?list=PLSfJ4B57S8DnhlrRya50IxGP90_uGpiho

We have received a lot of positive feedback from IEEE section, region, and national executive teams. The biggest challenge with IEEE is that they are not the best or easiest way to publish open source or open access work. They are honestly not set up for public access papers. IEEE is split between academia and industry members, and that’s the constituencies more or less served. Despite the big differences between a tiny open source non-profit and a gigantic professional development organization, there is a substantial amount of interaction and genuine mutual support. IEEE does not exist without volunteers. Therefore, what we are doing is recognizable as a thing of value by everyone in any role any of us comes into contact with. We also benefited from having access to the salary survey results, anonymized membership statistics, and a targeted member survey in order to help construct the Engineers General grant proposals to ARDC. Is there a possibility of funding through IEEE? Yes, although there are a lot of limitations.

We have solid relationships with a number of Universities. Working with academic institutions is not simple as a non-profit, but we have transcended these difficulties several times and are part of the process of getting space “done better” for students wherever we can. Our most recent involvement is getting AmbaSat at 70cm, the DVB-S2/X microwave band work, and M17 equipment on board sounding rockets and in the running on several LEO platforms. Is there a possibility of funding through Universities? Honestly, no. They expect funding from us, in order to do anything with us. That is just the way the current engineering academy operates. Students are not “free labor” now and never really have been in the past.

We have brought a small grant to a University, with the professor as the Primary Investigator (AmbaSat Inspired Sensors). We would be willing to do that again, if we were fortunate enough to get a professor of the same motivation, experience, and availability, and fortunate enough to get enough grant money to ensure student time. In general, the overhead customarily demanded at a University, and the costs of getting significant seat time from enough students, require much larger grants than we have pursued to date. If you know of an opportunity or have an idea, get in touch with ORI board and let’s see what we can achieve.

AmbaSat Inspired Sensors has redesigned the AmbaSat board to move from 915 MHz ISM LoRaWan to 70cm amateur radio satellite band. Thank you to Vidya Gopalakrishna and Jay Francis for making this happen. LoRa with integration to both SatNOGS and The Things Network through bridging is prototyping now. The first hardware with the 70cm part has been received and works. There were other changes to improve power and ground and routing. All of the details can be found in the kicad-conversion branch at https://github.com/phase4space/AmbaSat-1/tree/kicad_conversion/Release

This past year has been a significant step forward for the M17 Project. The protocol has been strengthened, the number of development boards in the community has increased, the amount of hardware that M17 can work on has increased, and the lab on the East Coast of the US is moving forward. There have been numerous successful public outreach efforts resulting in a steady increase in name recognition, awareness of the communications mode, and participation on the M17 Discord. A large amount of lab equipment has been earmarked by ORI for M17. This purchase opportunity came from Open Lunar Foundation and will put M17 lab into a highly capable category from the start. All of us associated with M17 would like to recognize the OpenRTX project. This team is a vital part of the M17 ecosystem and has done a significant amount of highly technical work to enable M17 on the MD-380 HT. OpenRTX has contributed a lot of engineering work, verification, validation, and lab tests for M17.

https://m17project.org/

https://openrtx.org/#/

Open Lunar Foundation and ORI collaborated on an SBIR grant application for funding targeting LunaNet in January 2021. While our application for funding was not successful, the feedback from the reviewers was positive and very constructive. The process for applying was clear, the technical work in preparing the application lined up with all of ORI’s goals for P4DX, and the teamwork with OLF was excellent.

https://www.openlunar.org/

We attempted to apply for a STTR with Tek Terrain LLC for opportunistic positioning and ranging using LEO signals in mid-October 2021, but we were not able to complete the application in time. We look forward to the next opportunity to work with a for-profit on something like this, as there are dozens of opportunities through a variety of government agencies for research and development. This particular project would have put some significant work into the public domain during Phase 1 of the grant.

We have an opening on our board of directors. Our co-founder Ben Hilburn has stepped down from the board. Thank you very much to Ben for helping found and build ORI. We welcome you to a (much less demanding) senior advisor role.

If you have a recommendation for someone to invite, or you would like to volunteer for this role, then get in touch to start the process. There are a few IRS limitations on who can be on the board to prevent conflicts of interest. No relatives of current board members, for example.

Current board is listed at: https://www.openresearch.institute/board-of-directors/

Our open source workers/employment initiative is called Engineers General. Two grant proposals were made to ARDC after a series of productive meetings with their staff. The initiative got a lot of positive feedback. All of ARDC’s feedback was incorporated into a set of revised grant requests that were re-submitted in October 2021.

We have 6 additional resumes that have been submitted to us. We have received a very large amount of interest in this initiative. Information from IEEE salary surveys, informational interviews with open source workers, and combing through peer reviewed papers resulted in the hypothesis of Engineers General, and all of this information was communicated to ARDC in support of the grant requests.

ORI board has the capacity, capability, and experience to manage contracted workers, and there is a population of highly qualified people that want to work in open source.

We do not have a timeline on when we will hear back from ARDC. P4DX took 11 months to approve. The ITAR legal work funding wasn’t pressing since the funding application followed completion of the work. The AmbaSat Inspired Sensors grant application was folded into P4DX at some point during its review process.

Rent-a-GEO was submitted in October 2019, and there has not been a final answer from ARDC about that proposal as of today. Rent-a-GEO is now down to ~2.5 years left on the offer of 5 years discounted rental of the transponder. This is closer to 2 because the team assembled for Rent-a-GEO would have to be rebuilt.

For those unfamiliar with this project proposal, it would enable a variety of GEO development work over useful space channels with a footprint that covers the continental United States. We did obtain a private pledge of funding for the rental due to the urgency with the lifetime of the resource coming to an end, and we have communicated this pledge of funding to the vendor handling the transponder rental. However, there are substantial contingencies with this funding source, and the vendor has a lot of challenges that they are dealing with. Negotiations are slow. I’ll keep working on this until EchoStar9 is turned off. In the meantime, we have had a series of successful experiments in Europe.

We are headquartered in California, USA. According to Cal Non-Profits, a 501(c)(3) dedicated to helping California 501(c)(3)s, they really do not know of any other organizations like ORI (or Open Lunar Foundation). We are quite rare. The vast majority of non-profits in CA (and across the US) are devoted to health and human services. Non-profits heavily dominate “last mile” services delivery in the US, and there’s a wealth of information about them and advice on how to operate. We have taken advantage of as much as we can all the advice given by Cal Non-Profits, and will continue to rely upon them for guidelines and checklists and statistics about the non-profit sector.

Almost all of the science and technology non-profits are private foundations. Almost all of the research institutes in this category have a single very large source of money, have paid staff, and are clearly dedicated to a mutually beneficial relationship with commercial consumers. This is a very different way of operating from ORI, which is registered as a public charity.

And, the way we have been funded directly impacts this status as a public charity. 501(c)(3)s like ORI are required to have diverse funding. We have to comply with what’s called a “public support test” that kicks in after our fifth year of operation. We’ve been around three years and have two more to go before this test is applied. While we did come very close to passing this test in 2020, we will not pass it for 2021. The specific test is that 33.3% of our funding must come from what are called public sources. Technically this means at least 33.3% of donations must be given by donors who give less than 2% of the nonprofit’s overall receipts. That 2% test means that each non-profit’s donation numbers will be different, depending on the overall receipts.

With ARDC being our primary funding source, all of the other sources amounted to at most 30% in 2020. In 2021, the vast majority of funding came from ARDC, putting the percentage from other sources down much further. A quick calculation today shows other sources of funding coming in at most 24%. Given the 2% rule, that number is in reality lower.

If we had just one unusually large grant from ARDC in our financial history, then that would be ok. The IRS lets you ignore one unusually large grant. You can punch that one out of your public support test calculations.

One can argue that all of the money from ARDC should count as unusually large, and all recipients out there doing tower trailers and buying equipment for mesh networks and university club shacks shouldn’t have to worry about this at all.

The amateur community has never sourced or sunk large amounts of money like this. Hams have a reputation for being tight-fisted with money. Frugality is a virtue that we ourselves value and employ, as described earlier in this letter in the way we’ve extracted several “extra” features from the P4DX grant money that a less motivated organization would not bother to do.

A step function of money of the magnitude that ARDC has, showing up in the amateur radio community, cannot easily be matched or diluted. ARDC principals have heard this from community members with philanthropic experience from the get go.

For almost any amateur radio organization, outside of the very largest, diverse sources of money on the order of an ARDC grant simply do not exist. This means that ham non-profits can take one large grant from ARDC without much trouble or effect on their status, but that’s it. The vast majority of ham clubs and organizations file nothing more than a postcard with the IRS every year. Above $50,000 in gross receipts and then they have to file the full 990. A large influx of money on an ecosystem of organizations that have never had access to it before includes both negative and positive effects.

For organizations like ORI that fully intended to work with ARDC for the long haul, this puts a huge additional fundraising burden on the leadership. Since ORI has ruled out selling memberships, the fundraising alternatives are even more challenging in an environment where a highly successful ham club auction raises $400.

So what happens when your public charity fails the public support test? Well, actually, nothing too horrible, but only if you are prepared for it. You are, after a process that does have a subjective component, converted from a public charity to a private foundation. The downside is that you have to re-file all your taxes as a private foundation going back all five years. There are some upsides. Private foundations do not have to follow some of the rules that public charities are required to comply with.

As soon as we figured out we were well on our way to being converted into a private foundation, which was mid-May 2021, we told ARDC. This was “news to them”. After talking it over with ARDC staff, we then hired a non-profit law specialist for advice (at ORI expense), wrote everything down, and came up with a plan. ARDC could either fund ARDC service programs that ORI would execute, and it would not “count against us”, or ORI could simply plan on becoming a Private Operating Foundation associated with ARDC. These options were proposed to ARDC staff. There was email back and forth and several zoom calls. The answer was eventually “no” on ARDC running Service Programs, but “yes” on ORI becoming a Private Operating Foundation associated with ARDC.

Problem solved! We had a party to celebrate. The feelings of IRS doom are kind of a big deal for a relatively new non-profit. We viewed this as being “hired”, in a way, by ARDC.

This solution held until October 2021. It was no longer clear that ARDC wanted this type of relationship. Both the “run Service Programs that ORI executes” approach and the “Private Operating Foundation associated with ARDC” approaches require a lot of communication and work. ARDC was not set up for either of these solutions. ARDC operates very differently from ORI. It does not have the same management structure or style, and it does not communicate like we do. Despite our best efforts, we couldn’t “impedance match” to make up for these differences. It’s unreasonable to expect them to change.

So, in November of 2021, the board of ORI and other senior advisers with non-profit and foundation experience recommended reversing the “conversion plan”. This means raising enough money to bring the ratio back up above the public support test limit to stay a 501(c)(3). The fundraising goal, as of today, is $150,000. This money has to come from diverse and much smaller sources. This must be raised over the next two years. It will be substantially more administrative and executive work to remain independent, but it’s how we were founded and how we have operated all along. The path forward is clear enough. The series of decisions during this process took a large amount of time and energy from May until November, but it was well worth the effort. Decisions about what type of non-profit organization ORI is or becomes have enormous impact on what we do and how well we are able to do it.

$150,000 (or more) is a large amount of money to raise in small amounts, especially within the amateur radio community. Have some advice? Want to get involved raising the money? Have another solution? Welcome aboard.

The fact that we exist and are successful in amateur radio communications R&D is very unusual. This means that we are vulnerable and it means we have more work to do, every year, to remain operational. Your support is vital for success.

Thank you to everyone that is pulling for us to succeed! We are looking forward to 2022 and welcome your ideas, time, talent, treasure, and advice.

-Michelle W5NYV
CEO ORI

ORI participation at OSCW 2021

Recording, transcript, and slides of Open Research Institute’s presentation at Open Source Cubesat Workshop 2021.


Hello everybody! I’m Michelle Thompson W5NYV and I’m here to tell you all about what Open Research Institute is and what we have been doing.

Open Research Institute (ORI) is a non-profit research and development organization which provides all of its work to the general public under the principles of Open Source and Open Access to Research. As we all know, these mean particular things, and those things have to be defined and they have to be defended.

Open Source is type of intellectual property management where everything you need to recreate or modify a design is freely available. As a baseline, we use GPL v3.0 for software and the CERN Open Hardware License version 2.0 for hardware. All we do is open source work, primarily for amateur radio space and terrestrial, but also some other fields, as you will see.

So who are we?

Here is our current board, and our immediate past CEO Bruce Perens. We have one opening on the board, as Ben Hilburn, one of our founders, very recently retired from being an active Director at ORI. He remains as one of our senior advisors. We are looking for someone to join ORI board that supports what we do and wants to help make it happen. It’s an active role in a flat management structure. Board members are are experienced in management, engineering, operations, and technology, and three out of the current number of four are from underrepresented groups in STEM.

As a board, it is our mission to serve our participants, developers, and community members. We now have at least 535 that participate in what we call the Open Source Triad: our mailing list, Slack, and GitHub. All work is organized in independent projects or initiatives.

We have some affiliations and we proudly ascribe to the Open Space Manifesto from Libre Space Foundation. We work with radio organizations, several universities, and have worked with a variety of for-profits.

What do we do?

Here’s a visual summary of top level projects and initiatives. The vertical axis is risk. Higher risk projects are at the top, lower risk projects are at the bottom. Maturity increases left to right. Maturity may indicate schedule, but the score is also influenced by complexity or difficulty. The color of the shape indicates how much stress that project is under or what the risk level is at this time. The size of the shape is the budget estimate. By far, the largest budget, riskiest, and least mature work is in the AquaPhage project, which is open source bacteriophage research and development. Bacteriophage are viruses that attack and destroy bacteria. This is biomedical and not amateur radio. This project was halted by COVID and has not yet resumed.

Our digital multiplexing payload project is called P4DX, and it’s in the middle in green. This is a multiple access microwave digital regenerating repeater for space and terrestrial deployment.

Channels divided in frequency are the uplink. The uplink is on 5 GHz. The processor on the payload digitizes and multiplexes these signals and uses DVB-S2/X as a single time-division downlink. The downlink is on 10 GHz. The system adapts to channel conditions and handles things like quality of service decisions. For example, low and high latency digital content. The uplink is divided up using a polyphase channelizer, based on the open source work done by Theseus Cores.

For the current prototype, we are only using MPEG transport stream, but generic data is the goal. The prototype beacon signal is 5 MHz wide and we are using one modulation and one error coding (yet). We are not yet rotating through all the allowed combinations in DVB-S2 (yet).

Our prototype work can also serve as a terrestrial multimedia beacon. Work was demonstrated to groups with mountaintop spaces in October 2021, and deployment will be as soon as possible.

M17 project is an open source VHF/UHF radio protocol. Think open source digital mode HTs and repeaters. This project is only slightly more stressed than P4DX, but it’s further along in maturity because it’s narrower in scope. We believe M17 Project will be very successful from current development to scaling up to commercial product launch. The M17 protocol is the native digital uplink protocol, with some modifications for 5GHz, for P4DX. We are working hard to get M17 on and through more satellites and more sounding rocket tests today.

Engineers General is our initiative to hire highly competent open source workers to reduce burnout and increase quality in open source work important to amateur radio. We have one contractor currently, eight resumes, and have applied for funding for two more. We are actively looking for funding for the remaining five.

The “birdbath” is a large dish antenna at the Huntsville Space and Rocket Center. This was used in the past, but has been parked for decades. It took two years of negotiation, but ORI has the support of the museum and permission to begin work renovating this dish for citizen science and amateur radio educational use. Work parties from earlier this year were rescheduled due to COVID.

Upper right there are two completed projects. One is ITAR/EAR Regulatory Work. It took over a year, but we received a determination from the State Department that open source satellite work is free of ITAR, from Commerce that it is free of EAR, and we obtained an advisory opinion that publishing on the internet counts as publishing under the regulations. This is a huge step forward for not just amateur radio, but anyone that wants to contribute to open source space work.

Debris Mitigation Regulatory Work took 10 months to complete. The process culminated in a highly successful meeting with the FCC Wireless Telecommunications Board, the Office of Engineering Technology, and the Satellite Bureau in late October 2021.

Lower right is Battery Matching, a project that matches NiCd cells for very durable batteries in the style that used to be done in amateur satellites, and puts the methods and documentation in the public domain.

AmbaSat Inspired Sensors used to be on the bottom right but now it’s bumped back a bit in maturity level is higher risk. This was supposed to be a project done by students at Vanderbilt university, but no students materialized, primarily due to COVID. We had one kick-butt professional volunteer who was working on a 10GHz beacon that went into the sensor connector on the main board, but the project was moving slowly, and ORI decided to provide additional operational support. Additional volunteers joined the team, we reviewed the finances, and then took some actions. We updated the main board to move it from the illegal ISM band it was in to the legal 70cm ham band. We improved power and ground and addressed some other design concerns. The boards are back as of last week and software and firmware development is underway. The 10 GHz sensor “beacon” work is proceeding quickly as well. AmbaSat is an excellent educational platform, but the ISM band decision isn’t the only problem with it. It’s very small.

We decided to look at combining the 70cm AmbaSat with another open source satellite board to make a combined spacecraft design. I reached out to Pierros Pappadeus at Libre Space, and we are moving forward with using the SatNOGS Comms project. We look forward to contributing to the FPGA codebase and flying both AmbaSat and SatNOGS Comms designs as early and as often as possible, starting with sounding rockets and ending up in space.

All of these projects are open source and all work is published as it is created.

When?

We have timelines! We were incorporated in February of 2018, got our 501c3 in March of 2019, and we hit the ground running and haven’t stopped since.

We’ll distribute a copy of the slides so you can see our wins and losses along the along the way. There’s a lot going on in here.

Here’s what’s been going on since March, and the future plans we know about.

We use Agile framework for management, and most of us have some sort of formal certification either completed, or in process. This is the Agile manifesto and it is the foundation of how our board decides things and how it supports project leads and volunteers. Note the second item, and put in the word hardware instead of software, and that’s one of the reasons we demonstrate early and often and incorporate the feedback quickly.

Where are we?

Here’s the locations of the concentrations of current major contributors and participants. When we say international, we mean it. Our participants have a wide range of ages, are generally educated in engineering, come from a variety of backgrounds, but do tend to be relatively young and male.

We have some physical locations that are important for carrying out the work we do. Remote Labs are lab benches connected to the internet that allow direct access to advanced lab equipment and two different large Xilinx development boards and DVB-S2/X gear. We have relocated our second Remote Lab equipment from Florida to Arkansas, and have added a three-dish interferometry site for amateur radio and public science use. Remote Labs are here for you all to use. If you need large FPGA resources and test equipment up to 6 GHz, then we have your back.

We bought Open Lunar Foundation’s satellite lab. It’s in storage waiting for the M17 project lab construction to conclude, and then the equipment will go there to pack that lab full of wonderful test equipment, materials, and supplies.

Why do this?

We believe that an open source approach to things like amateur digital communications, bacteriophage research, and sticking up for the non-commercial use of space will result in the best possible outcomes for the good of humanity.

We have a lightweight agile approach to doing things. We keep our overhead very low, we are radically participant-focused, and the work must be internationally accessible.

You can see that public demonstrations and regulatory work are given a high priority. Working code and working hardware are highly valued. Working means working over the air.

Thank you to everyone at Libre Space for the support and opportunity to present here today.

https://www.openresearch.institute/wp-content/uploads/2021/12/OSCW-2021-W5NYV-ORI-1.pdf

Space and Satellite Symposium 2021 Transcript and Video Links

Welcome to the IEEE Space and Satellite Symposium: Information Theory, Amateur Radio, and Amateur Satellites.

This event is co-sponsored by the IEEE San Diego Computer Society Chapter, lead by Naveed Qazi. Please welcome him to the stage as explains what the Computer Society is all about. Naveed you have the floor.

(Naveed shared a live update with the audience about the Computer Society meetings, events, and areas of concentration.)

This event is also co-sponsored by the IEEE San Diego Information Theory Society, lead by Dr. Orlitsky and Michelle Thompson, W5NYV.

Logistics sponsor is Open Research Institute. A special thank you to Vidya Gopalakrishna, Jayala_29, Jim Tittsler, Navid Qazi, Charlie Bird, the IEEE review committee, IEEE-USA, and all our speakers.

All talks have already been published on YouTube, so if there’s something in particular you want to see and you have limited time, then please feel free to go straight to the playlist. Our goal for this event is high-tech and low-stress.

If you have questions for the speakers, please put them in chat. If the speaker is present, then they will answer there. All questions will be anonymized and sent to the speakers. A Q&A will be added to the YouTube playlist.

Information Theory is an intensely interdisciplinary field. This collection of talks demonstrates that to great effect.

The talks span a variety of subjects and are from people with a range of experience and backgrounds.

All talks will be available for free going forward and we look forward to working with IEEE on future events and workshops.

In November, Open Research Institute will have a series about mission planning for non-traditional amateur satellite orbits and we will be at HamCation in Florida in February of 2022. If you are there, please visit our booth. We’ll have a forum with TAPR and will be hosting a contest for the hamlets attendees.

We will begin with our keynote, Ugly Modern Music: An Information Theoretic View by Frank Brickle. Talks will play live from here with a brief intermission at 10am US Pacific.

It has been a great honor to work with Frank Brickle. It’s often said that music and mathematics are closely related, but relatively little published accessible and practical work. We hope this presentation is a step forward towards a goal of Information Theory Applications in Music.

Our next talk is about amateur radio as a testbed for science and high technology. Courtney Duncan has a unique viewpoint here, as he recently retired from the Jet Propulsion Laboratory and was a lead on the Mars Helicopter.

Thank you to Courtney for continuing service to both the scientific and amateur communities and for describing an interpretation of the amateur radio service, for both space and terrestrial, that provides both a practical and a theoretical role.

I think we can see how amateur radio values and practice assisted in the success of the Mars Helicopter.

Please share your questions for Courtney in the chat. He is here and can answer. If you want to send in your questions later, then send them in to the address in the Symposium email, or at w5nyv@arrl.net.

Next, is Anshul Makkar, who will speak about specific very technical work for the amateur radio satellite service. He is working on Low Density Parity Check implementation on Field Programmable Gate Arrays for any amateur satellite project that sees the value in open source work.

Thank you to Anshul Makkar. If you have questions for him please share them in chat, as he is here and can answer them live, or send them to the contact addresses in the Symposium registration email, and we will follow up.

Bringing multiple implementations of LDPC to the open source community is one of the things that Open Research institute does, and it is something that you can find an enormous number of IEEE resources about.

Next is Dr. Estevez who will be speaking about his work on a narrowband modem for the QO-100 GEO amateur radio transponder. For those of you unfamiliar with this satellite, it’s the first geosynchronous amateur radio payload. This is a remarkable achievement and a huge step forward for amateur communications. This physical platform for experimentation will give us opportunities for innovation for years to come. Dr. Estevez work is a big part of that movement. Please welcome him to the stage.

A special note, on October 24th, Dr. Estevez was awarded the G3AAJ Trophy, from AMSAT-UK, in recognition of his contributions to amateur satellite development and activity. In addition to the practical applications seen in this presentation, Dr. Estevez is also the author of GNU Radio satellites block set, which are blocks in gnu radio that allow one to much more easily receive satellite communications using GNU Radio. If you are unfamiliar with GNU Radio, a DSP framework for SDR, then please visit gnu radio dot org to learn more.

Next is a talk about a very practical and scrappy project – figuring out how to characterize channels and make circuits for a very small open source satellite platform called AmbaSat. Part of the mission of IEEE and Open Research Institute is education and professional development. If you see a way to contribute to the success of renovating and improving the AmbaSat platform, please get in touch with Vidya Gopalakrishna and Dr. Alan Johnston, the Primary investigator and advisor for this particular project, which is funded by ARDC.

Please welcome Vidya to the stage.

Thank you to Vidya Gopalakrishna. Please ask your questions for her in the chat, as she is here and can answer them live.

Part of our event was a call for musical compositions related to Space and Satellites. We are proud to premiere some original music today. The first of the two short pieces that we will play today is Space Orchestra, which is categorized as Jazz. A full information theory analysis of this piece will be done for the next San Diego Information Theory Society meeting, later this year.

The theme of this piece, is what the composer felt and decide to write, when focusing on the planets of our solar system, and our place within it. This is Space Orchestra, put into the public domain and available at no cost from Open Research Institute.

Space Orchestra

Our second music premiere is called Risk, and is in the electronic dance music category. The lyrics are from John F. Kennedy’s speech at Rice University, but are from a part of the speech that is not quoted as often as the section that includes “we choose to go to the moon, not because it is easy, but because it it hard.” Instead, we highlight the part of the speech that puts space exploration in the context of human history, and recognizes the great risk of exploration into hostile conditions for the benefit of all.

This is Risk, available from Open Research Institute for free.

Risk

Jan King

Our closing talk is from Jan King, a space industry professional and frequent contributor to amateur satellite work. He is speaking today about the very bright future for millimeter wave amateur satellites. Please welcome to the stage Jan King.

Thank you to Jan King.

This event would not be possible without a significant amount of work from our speakers, sponsors, supporters, and volunteers. Thank you all for your time and expertise.

Do you have an idea or talk that you would like to share? All of us at the chapter level in IEEE, like Naveed Qazi, Dr. Orlitzky, myself, and many others, are here to make it as easy as possible for your work to be shared. Get in touch and we’ll get you started and supported.

This transcript with the links to videos will be posted to the YouTube playlist description, and will be sent out to everyone that registered in advance, to make it easy for anyone to replay any part of this event. For this set of presentations, 104 people pre-registered and there’s a large number of views on the content in the playlist as of the close of the conference.

While the half-day conference program has concluded, the floor is open for discussion, questions, comments, and ideas for related or future work.

ITAR/EAR Regulatory Work Background and Summary

September 12, 2021
Michelle Thompson W5NYV

Export regulations divide both technical information and actual hardware into three categories. The most heavily restricted technologies fall under ITAR, the International Traffic in Arms Regulations, which are administered by the State Department. Technologies subject to more routine restrictions fall under EAR, the Export Administration Regulations, administered by the Department of Commerce. Technologies that are not subject to either set of regulations are not restricted for export.

ITAR and EAR have had a dramatic effect on both commercial and amateur satellite work since at least the mid-1990s. The regulations are blamed for a significant decline in US market share for satellite systems and halted highly successful international amateur collaborations.

There is a public-domain exception in both ITAR and EAR. Open source work that is published as it is created, and is freely available to the general public at no cost, is not subject to ITAR or EAR.

Open Research Institute (ORI) was founded in March 2018 by Bruce Perens in order to provide a formal structure for open source satellite work. Bruce invited Ben Hilburn and myself to be the founding officers. ORI is headquartered in California, USA. Participants come from all over the world.

ORI memberships would not be sold in order to not compete with amateur satellite membership organizations in any way. All work would be freely available to the general public in compliance with ITAR and EAR. ORI was set up as a project-based research institute and not as a member society.

ORI became a 501(c)(3) in March 2019 and began fundraising with the Trans-Ionospheric conference badge project. This was successful and allowed for open source satellite technical and regulatory work to proceed. While all the legal advice so far had affirmed ORI’s interpretation of ITAR and EAR public domain carve-outs, some potential funding sources wanted to see a “formal” legal opinion.

Our choices were to continue insisting we were right, or to be effective. ORI chose to be effective.

In July 2019 Bruce Perens interviewed several several law firms that were aligned with ORI goals and values. We selected one recommended by the Electronic Frontier Foundation (EFF) and began working with Thomsen & Burke LLP to form a legal strategy that would clearly and explicitly solve the “ITAR/EAR problem” for amateur satellite.

From May – September 2019, I campaigned in a contested election to the AMSAT-NA Board of Directors and won a seat. AMSAT stands for AMateur SATellite, and is composed of a number of organizations around the world that support the amateur satellite service. AMSAT-NA is the North American amateur satellite advocacy organization. The name of the North American organization is frequently shortened to AMSAT.

In November 2019, December 2019, and January 2020, ORI reached out in writing to AMSAT-DL, JAMSAT (AMSAT Japan), AMSAT-UK, AMSAT-NA, EFF, the Institute for Electrical and Electronic Engineers (IEEE), American Radio Relay League (ARRL), Open Source Initiative (OSI), and multiple Universities and individuals active in open source and amateur radio. The communication outlined the legal strategy, invited collaboration, and asked for statements of support.

The legal strategy consisted of three parts. First, a Commodity Jurisdiction Request to the US State Department asking for a Final Determination Letter that said that open source satellite work was free of ITAR. Second, a classification request to the US Commerce Department that would use the Final Determination to synchronize classification under EAR. Third, an Advisory Opinion Request to US Commerce clarifying the result from the US Commerce Department. This final step would provide needed guidance on publishing requirements and make it abundantly clear that open source satellite work was indeed free. Being free to work with others in the open is vastly superior to complying with onerous and punitive regulations designed to insure “national security”.

All organizations responded to or at least acknowledged the letter, except AMSAT.

On 20 February 2020, Open Research Institute filed a Commodity Jurisdiction Request with the US State Department, seeking to establish that key technologies for amateur radio are not subject to State Department jurisdiction. “Information and Software for a Digital Microwave Broadband Communications System for Space and Terrestrial Amateur Radio Use” was assigned the case number CJ0003120.

As encryption is allowed under Part 97 amateur satellite rules, the use of encryption was deliberately included in the request. The inclusion of encryption mandated that the Bureau of Industry and Security would have to review the request, which lengthened the schedule. The Department of Defense and the Department of Homeland Security also reviewed the work, as both departments have significant interest in regulating communications satellites and communications technology.

On 11 August 2020, The United States Department of State ruled favorably on Open Research Institute’s commodity jurisdiction request, finding that specified “Information and Software for a Digital Microwave Broadband Communications System for Space and Terrestrial Amateur Radio Use” was definitely not subject to State Department jurisdiction under ITAR.

The technology was not subject to State Department jurisdiction. This was the best possible outcome of a CJ request. The news was publicly announced.

The Final Determination letter, Commodity Jurisdiction cover letter, and the application itself can be found at:
https://github.com/phase4ground/documents/tree/master/Regulatory

A list of Commodity Jurisdiction request summaries can be found at the State Department website at:
https://www.pmddtc.state.gov/?id=ddtc_kb_article_page&sys_id=6ea6afdcdbc36300529d368d7c96194b

Under this Final Determination, the technologies were subject to the EAR. The next step was to submit a classification request to the Commerce Department. Work began on the request with Thomsen & Burke LLP.

In October 2020, the classification request was submitted to the US Commerce Department.

During the board meeting at the 2020 Symposium (October), I moved for AMSAT to adopt the regulatory results from ORI as AMSAT’s open source policy, using ORI’s participant and developer policies and open source approach as a template that would be customized for AMSAT. The motion also included a companion policy for closed-source/proprietary work, as there was no written policy for ITAR/EAR of either type. We would coordinate with both FD Associates and Thomsen & Burke LLP to write this two-pronged policy. This would completely cover AMSAT for any type of project.

The rest of the board wanted to instead establish an “Open Source Committee” that would produce a report in 90 days.

The 90 days expired without a report. The committee was renewed for another 90 days. That 90 days also expired without a report. I volunteered to participate on this committee, but was not included.

In January 2021, a classification of all the items, as requested, was received from the US Commerce Department.

Work began with Thomsen & Burke to draft an Advisory Opinion Request asking that openly published work ceases to be subject to the EAR. This established a full chain of documentation for open source amateur radio satellite service work.

On 23 February 2021, the Advisory Opinion Request was sent to the US Commerce Department.

On 2 September 2021, the US Commerce Department confirmed Thomsen & Burke LLP’s advice that posting information on the internet so that it is available to the public means it is not subject to the EAR.

Classification and Advisory Request documents can be found at: https://github.com/phase4ground/documents/tree/master/Regulatory

Many organizations have picked up the regulatory results, expressed appreciation, asked questions, and have indicated they are incorporating the results into their own work and policy documents.

The legal costs were fully reimbursed with a generous grant from Amateur Radio Digital Communications (ARDC). See https://www.ampr.org/grants/grant-open-research-institute/

ARDC and ORI share a vision of clearly establishing open source as the best and safest way to accomplish technical volunteer work in amateur radio. The regulatory work provides solid support for that vision. The path is clear for a number of interesting projects facilitating new methods for terrestrial and satellite communications, opening the door to robust global digital amateur communications.

Current work with Thomsen & Burke LLP is to write documents that explain how these results can be best used by others. This has significant relevance in industry and academia. Our goal is to make it as easy as possible to use the results.

The FAQ, optional notice, and training can be found (as soon as they are completed) at https://github.com/phase4ground/documents/tree/master/Regulatory

Will there be additional filings? The goal of any additional filings is to build a body of work that solidly support a wide variety of open source work. This is somewhat similar to the way patent portfolios work in commercial settings. It’s the sort of thing AMSAT could, and honestly should, be helping with.

This effort gives direct and large benefits to a large number of organizations, but it benefits AMSAT in particular. It allows free and open international collaboration, dramatically reduces legal risks, increases the potential volunteer corps, simplifies fundraising, and reduces management burdens.

The work applies to orbits besides GEO and technology besides DVB-S2/X. Those that “insist” on extremely narrow final determinations can write their own Commodity Jurisdictions requests and expect to get the same result because they can use this one in their request as a model and reference. As said before, additional filings would be of great benefit to the community because a population of results strengthens the case for open source work. However, additional filings are not necessary to use the results.

The key to using these regulatory results, or any like it, is that the public domain carve outs in ITAR and EAR are solid and provide a bright path out of a bad place. In order to use them, one has to commit to documented open source policies and follow the law with regard to what constitutes publishing. According to the Advisory Opinion Letter, if it is published, it must be free.

Publishing work as it is created, freely available to the general public, is the way to use the public domain carve-outs in the law. Publishing designs and data that allow the recreation of a work of software or hardware means publishing schematics, Gerber files, bills of materials, source code, tools required, test data, test plans, and the license that that work uses.

This last part is often overlooked but is a necessary part of a compliant open source policy. ORI recommends the CERN open hardware license or the TAPR open hardware license for hardware. ORI recommends GPL version 3.0 for software. Any license recognized by Open Source Initiative is an excellent starting point. Providing regular copies of work to a public library, whether in print or on DVD, is a baseline approach for a publishing policy. Using GitHub or GitLab is another recommended baseline policy.

ORI recommends the CERN Open Hardware License v2 because of the way it enables a useful open source hardware definition in a world dominated by a wide variety of proprietary tools. For example, FPGA design is a large and growing part of our world in advanced open source digital communications, and is the central service provided by ORI’s Remote Labs. Find more information about Remote Labs here: https://github.com/phase4ground/documents/tree/master/Remote_Labs

Since open source tools for FPGA are currently not capable of executing some of the required designs, as long as the tool or component meets the definition of “available component”, then the use of things like proprietary tools are allowed in the production of an open source design.

Following the example of FPGA work, this means that the VHDL source code is available for free to the general public. The FPGA is listed in the bill of materials and can be purchased. The version of Xilinx Vivado is listed, and can be obtained.

ORI’s developer and participant policies can be found here:
https://openresearch.institute/developer-and-participant-policies/

This regulatory work is a significant and positive result for the commercial and industrial world as well as in amateur and academic circles. Goals for the amateur radio satellite service should be the absolute minimum regulatory fear and risk for amateur volunteers, and a maximum amount of free and open international technical cooperation.

Thank you! Contact ORI with questions about the legal work at ori at openresearch dot institute

Successful Regulatory Results for Open Source Amateur Satellite Work

On 2 September, 2021, Open Research Institute (ORI) received an advisory opinion from US Commerce Department BIS.

The letter confirmed that posting information on the internet so that it is available to the public means that open source amateur satellite communications work is not subject to the Export Administration Regulation (EAR). Prior work established that open source amateur satellite communications work was free of International Traffic in Arms Regulations (ITAR).

This is a significant regulatory success for open source amateur satellite work and open source in general.

Work was funded by ARDC and executed by Open Research Institute. Legal assistance was provided by Thomsen and Burke LLP.

All documents and links to presentations about the work are freely available at https://github.com/phase4ground/documents/tree/master/Regulatory

Thank you to those who have supported and assisted ORI during the many stages of this successful regulatory endeavor. Making a successful argument requires competence, persistence, and patience. ORI will build upon this work moving forward in order to advance the aims and purposes of open source amateur radio work.

Visit https://www.openresearch.institute/getting-started/ to get involved.

Executive Board Meeting Minutes August 2021

Attending:

Steve Conklin (CFO), Rose Easton (guest), Keith Wheeler (Director), James Wheeler (Acting Secretary), Michael Easton (guest), Paul Williamson (Master at Arms), Michelle Thompson (CEO)

Location:

Koi Restaurant, Planet Hollywood, Las Vegas, Nevada, USA (DEFCON)

Minutes:

-Opening Remarks
–Motion passed to maintain current group of Directors (Bill and Karen in absentia)
-Previous minutes edits approved
-Open Lunar Business lab equipment obtained due to running under budget on equipment
-ARDC and ORI remote lab talks continue
-Plans on movement of Remote Lab East to Remote Lab South
–Motion Passed Remote Lab South to be established on the property of Keith Wheeler, in Little Rock, AR
–Shipping costs of equipment will likely push over grant budget
—Some amount of leeway needed to adjust budgeting to cover shipping
Recess
-ERR request being considered up to $10k
-Discuss to go beyond the budget originally allocated to make up for the sudden need to shut down Remote Lab East
-Additional discussion made to take from the M17 account to make up for additional cost
-Discussion conducted on determining how far over budget lab project can go before additional meetings must be conducted
-Pertinent Budget Information:
–Currently, under budget by $2k
–Lab equipment in bay area costs $500 a month
-Motion Passed: Proposal to allow for a $20k overage on the lab budget, to account for movement of equipment to Remote Lab South, and M17, used at the discretion of M approved. In the event that additional cost beyond this limit is reached, another meeting will be held
-Progress with discussions with M17 and FCC discussed
–Future discussion with International Satellite Bureau and OET planned after meeting with the FCC
-Plans to discuss successes with the FCC and defeating ITAR at upcoming HAM Expo
-Regulatory meddling in Texas successful
–space industry people happy with meddling due to discussing debris mitigation and FCC jurisdiction
-AMSAT maintains that debris mitigation rules should not be enforced on HAM radio, believe it will destroy space based HAM radio
–AMSAT invited to meetings and to be part of the planning committee but declined
-FCC seems to be leaning more towards ORI beliefs on debris mitigation
-Possibility of LEO being one of few exceptions to debris mitigation rules
-End goal of FCC discussion is to allow for ambitious missions, including graveyard orbits
–Possibility of third graveyard orbit
-The meetings will continue until morale improves
-Note of moving of satellite antennas to Remote Lab South, due to increased space
-Discussion of grant being written by Keith to get a salary for engineers on a contract basis from ARDC, and for payment for Lab Director to maintain lab equipment on Remote Lab South, no motion to be made at time, but grant will be applied for
-Closing Remarks
-Motion to adjourn