Inner Circle Newsletter – All About the RFBitBanger

Three Days Remaining for the RFBitBanger HF Radio Kit DEFCON Show Special

Be a part of the future with a prototype kit build of the RFBitBanger, a low-power high-frequency digital radio by Dr. Daniel Marks KW4TI. Presented by Open Research Institute, this kit is designed to produce 4 watts of power and opens up a new digital protocol called SCAMP. Your donation in exchange for this kit directly enables the development of an innovative Class E amplifier based radio design. It has a display, button menu navigation, and keyboard connection for keyboard modes and keyboard-enabled navigation. This radio can be taken portable or used in a case. If you have a 3d printer, then Dr. Marks has a design ready for you to print.

  • Built-in digital modes: CW, RTTY, SCAMP (FSK and OOK, multiple speeds)
  • Key jack supports straight keys and iambic paddles
  • Open Source hardware and firmware, Arduino UNO compatible
  • External sound-card FSK digital modes supported (including FT4/FT8)
  • Experimental SSB support
  • Serial port support (2400 baud) for send and receive in keyboard modes

SCAMP is a new protocol that allows keyboard-to-keyboard contacts with a digital protocol that has excellent connection performance. See Dr. Marks presentation about RFBitBanger at QSO Today Academy in September 2023 to learn more about SCAMP and the RFBitBanger project. Information about that event is here:

All surface mount parts on the main board are pre-installed at the factory. All the through-hole parts you need to complete the radio are provided for you to solder yourself. If you don’t know how to wind toroids or solder surface mount capacitors, this is an excellent kit to learn on. There are just six toroids on the main board, and two on each band pass filter board. You can build just one band pass filter board and operate on a single band, or you can build an assortment. We provide 12 filter boards, enough toroids to build any 9 filters, and a supply of capacitors that will let you build those 9 filters for 9 different HF ham bands. These capacitors are size 1206, which is the largest common size for SMT capacitors and the easiest to solder manually. All you’ll need is a pair of tweezers and your regular soldering iron and solder. We provide detailed instructions on winding the toroids and soldering the capacitors. You get spare filter boards to experiment with.

Support is provided through a dedicated Open Research Institute Slack channel.

Instructions on how to join the ORI community are here:

Delivery is no earlier than late August 2023. Will be posted here and on the ORI website at

If you missed this sale, check out the upcoming show special at QSO Today Academy.

Want to Learn More About RFBitBanger?

Project lead Dr. Daniel Marks will give a presentation about the RFBitBanger at QSO Today Academy 9 September 2023 1300 PDT, 0800 UTC.

Daniel Marks, KW4TI, is a Ph.D. in Electrical Engineering, having graduated from the University of Illinois at Urbana-Champaign in 2001. His fields of speciality include optical engineering, computed imaging, and signal processing. He has made dozens of open hardware projects including many for amateur radio.

The recent shortage of semiconductors, parts important for electronics, shows us that supply chains can be fragile. What does this mean? It means if we have a big problem for a long time, our advanced radios might be tough to keep working, which could be a problem in an emergency.

To solve this, a new kind of radio called the RFBitBanger has been created. It’s a type of low power, long-distance radio that is easy to build from basic parts using simple tools. It uses a new digital language, called SCAMP, made specifically for this radio.

All the signal work is done by an Arduino processor. What’s cool is that the radio has a small screen and buttons or you can even attach a keyboard. It’s a full text communications system all by itself. SCAMP is pretty special too. Even though it only needs a simple 8-bit microcontroller, it can do lots of things that digital modes like FT8 can do using small bandwidth and something called forward error correction.

The RFBitBanger radio has other helpful features. It can support CW (which is Morse code), RTTY (another way of sending text), and SSB phone (voice communication).

We hope that the RFBitBanger can serve as an easy-to-build and easy-to-maintain emergency radio. It can also be a great educational kit. And, it can be a lifesaver when there’s a big shortage of parts.

Media for RFBitBanger

Thank you to Hackaday and QRZ forums for covering the RFBitBanger project. Here are the links to the articles.

Opportunities This Week at ORI

Greetings all!

What do you need help with this week?

Here’s some opportunities at ORI.

1) Pierre and Ahmet are looking for people to help with mobile app design on Ribbit

The Ribbit Radio app is in both Android and Apple testing. The updates to Rattlegram are incorporated and the app is functional on both platforms. We have had excellent response for test teams and things are moving forward.

To make the app as great as it can be, we could use some additional human resources for UX/UI/code development. If this sounds like something you are interested in, please join #ribbit on our Slack or write to me directly and I’ll get you in touch with the team leads. 

2) DEFCON volunteers for the booth/exhibit. We’ve got just enough people to cover it. It’s a great event. We have solid support from RF Village and we advertise to Ham Radio Village. If you have been sitting on the sidelines waiting for a chance to do something for ORI, this is the best event of the year. for details about DEFCON 10-13 August 2023 for details about our Village, RF Hackers Sanctuary.

3) FPGA designs for Haifuraiya and Neptune. Want to use MATLAB/Simulink, VHDL, and Verilog to make open source digital communications designs for aerospace, terrestrial, and drones? These designs run on updated FPGA stations in ORI Remote Labs, and everything is on the microwave amateur radio bands. When you see microwave frequencies mentioned, then it’s good to also say that “we use these bands or lose them”. We’ve got plenty to do. Get in touch on #haifuraiya or #neptune on Slack or to any ORI director. 

4) Meander Dipole construction phase. Project Dumbbell explores an overlooked HF antenna design. There’s been strong interest in these designs from multiple people (some of which are on this list), clubs, and organizations. We need to build the designs that MATLAB says look pretty good. Time to make it work over the air and write up some construction and measured performance articles. 
As always, there’s plenty more going on, but these projects have some specific needs, today. 

Thank you to everyone that supports our work. I’d like to especially thank the IEEE and ARRL for being excellent partners to ORI. 

-Michelle Thompson