
FunCube+ Mode Dynamic Transponder
Analysis and Simulation Model for AMSAT-UK

The proposed "fast uplink, slow downlink" dynamic transponder concept for AMSAT-UK's

upcoming FunCube+ 2U CubeSat represents an interesting power-conservation strategy,

but requires careful analysis of buffering requirements, timing constraints, and mode

compatibility. Open Research Institute (ORI) was invited by AMSAT-UK to support and

propose designs for an upcoming launch opportunity. This article is the first in a series from

ORI about this collaboration.

Challenges

Buffer size requirements need to be calculated and tested. We must store potentially entire

passes worth of data. We have latency challenges. Communication becomes store-and-

forward rather than real-time. FPGA complexity is mainly in the buffering and control logic.

We need to define the user experience. We need to define the Doppler on both fast receive

and slow transmit.

Mode Analysis for FunCube+

Looking at the operating context of FunCube-1 (AO-73) we have an uplink of 435.150-

435.130 MHz (Mode U, 20 kHz bandwidth, LSB) and a downlink of 145.950-145.970 MHz

(Mode V, USB). This is a traditional transponder with an inverting linear at 300 mW PEP.

Telemetry is 145.935 MHz BPSK, 30/300 mW. What are some reasonable options for

FunCube+?

1) Digital Voice, Data, and Keyboard Mode

Fast Uplink of 435.xxx MHz with 81 kHz bandwidth Opulent Voice protocol. Slow Downlink

of 145.xxx MHz with a 20 kHz bandwidth BPSK data stream. This is the current bandwidth

limit. Bandwidth is traded off against latency and satellite power budget for up to ~4:1

compression.

Open source implementation for FPGA can be found at

https://github.com/OpenResearchInstitute/pluto_msk. Advantages include clear quantifiable

data rates for buffering calculations and high fidelity voice integrated with keyboard chat,

data, and control messages.

2) Digital Data Mode or Pure Store and Forward

https://github.com/OpenResearchInstitute/pluto_msk


Fast Uplink at 435.xxx MHz with FSK/PSK at 9600 bps. Mode such as G3RUH. Slow

Downlink at 145.xxx MHz with BPSK at 1200 bps. The optimization of the rates would need

to be optimized and analyzed, but we could achieve an 8:1 radio of data rate compression.

This is relatively easy to implement in an FPGA. There are clear quantifiable data rates for

buffering calculations. There is potential compatibility with FUNcube Dashboard software

ecosystem. This would be suitable for telemetry and educational data collection.

┌─────────────────────────────────────────────────────────┐
│                    Ground Station Domain                │
│  - High Power Transmitter                               │
│  - Fast uplink mode                                     │
│  - Receives slow downlink mode                          │
└─────────────────────────────────────────────────────────┘
                        Fast UP          │
                          │          Slow DOWN
┌─────────────────────────────────────────────────────────┐
│              Satellite Transponder Domain               │
│  ┌──────────────────────────────────────────────────┐   │
│  │  RF Frontend (Mode U/V or S-band)                │   │
│  └──────────────────────────────────────────────────┘   │
│                          |                              │
│  ┌──────────────────────────────────────────────────┐   │
│  │  Demodulator (Fast Rate)                         │   │
│  │  - Doppler compensation                          │   │
│  │  - Symbol timing recovery                        │   │
│  └──────────────────────────────────────────────────┘   │
│                          |                              │
│  ┌──────────────────────────────────────────────────┐   │
│  │  FPGA Processing Domain                          │   │
│  │  ┌────────────────────────────────────────────┐  │   │
│  │  │ Rate Buffer (FIFO)                         │  │   │
│  │  │ - Elastic storage                          │  │   │
│  │  │ - Flow control                             │  │   │
│  │  └────────────────────────────────────────────┘  │   │
│  │  ┌────────────────────────────────────────────┐  │   │
│  │  │ Power Management Controller                │  │   │
│  │  │ - Battery state monitoring                 │  │   │
│  │  │ - Transmit duty cycle control              │  │   │
│  │  └────────────────────────────────────────────┘  │   │
│  └──────────────────────────────────────────────────┘   │
│                          |                              │
│  ┌──────────────────────────────────────────────────┐   │
│  │  Modulator (Slow Rate)                           │   │
│  └──────────────────────────────────────────────────┘   │
│                          |                              │
│  ┌──────────────────────────────────────────────────┐   │
│  │  RF Transmitter (Lower power)                    │   │
│  └──────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────┘



Jupyter Lab Notebook Python Classes

Link and design analysis was carried out in a Jupyter Lab Notebook in Python. Here is an

explanation of the code and the results.

Python imports

We import the libraries that we need to run our code. These are helpful functions for math,

plots, code organization, and variable enumeration.

TransponderConfig Dataclass

A dataclass is a object oriented structure. A dataclass is a collection of members (variables

or constants). A dataclass is composed only of members. It does not contain any function

definitions. This is how we configure our uplink and downlink data rates, buffer sizes, pass

duration, radio parameters, battery and solar capacities, and other values. We can have a

separate dataclass for different configurations. If we want to change a configuration, or try

out a different proposal, then we can simply import a different dataclass that corresponds to

a different design. Keeping the data separate from the calculations helps make our analysis

flexible and results in easier and better documentation.

TransponderMode Class

This class sets up an enumeration of transponder modes. We can be in receiving, buffering,

transmitting, or idle state. When we call TransponderMode(number) then it returns the

mode corresponding to that number, as defined inside the class.

In [14]: import numpy as np
import matplotlib.pyplot as plt
from dataclasses import dataclass
from enum import Enum

In [15]: @dataclass
class TransponderConfig:
    """Configuration parameters for the dynamic transponder"""
    uplink_rate_bps: int = 9600
    downlink_rate_bps: int = 1200
    buffer_size_bytes: int = 65536
    pass_duration_sec: float = 600
    tx_power_watts: float = 0.3
    rx_power_watts: float = 0.1
    battery_capacity_wh: float = 10
    solar_power_watts: float = 4

In [16]: class TransponderMode(Enum):
    RECEIVING = 1
    BUFFERING = 2



DynamicTransponder Class

At the heart of the simulation are the DynamicTransponder Class methods (functions). This

class contains a set of methods that we are going to be using in our mode analysis. The

initialization function is listed first. This function is called whenever we create a

DynamicTransponder Object. A TransponderConfig object is requried in order to creat a

DynamicTransponder object. When we run an analysis, we create a TransponderConfig

object first, then we use that list of values to set up a Transponder object.

Separating configuration clases from the transponder class gives us flexibility and clarity.

We can look at the values in the configuration file without having to search through a

lengthy class full of function defintions for variables. We can have multiple configurations

and then simply re-use the DynamicTransponder class with different configurations. This

division of labor is very common in scientific Python programming and is a naturally good fit

for the analysis of radio systems.

We get many of the members of the DynamicTransponder class by importing all of the

members from the TransponderConfig dataclass. This is our "starter set" of values. Each

value from the Configuration dataclass is then available in TransponderConfig as

self.config.name-of-variable-in-TransponderConfig-dataclass.

Right after that, we also set up additional members for the Transponder object, such as

self.buffer_fill_bytes and self.time_sec.

    TRANSMITTING = 3
    IDLE = 4

In [17]: class DynamicTransponder:
    def __init__(self, config: TransponderConfig):
        self.config = config
        self.buffer_fill_bytes = 0
        self.mode = TransponderMode.IDLE
        self.battery_level_wh = config.battery_capacity_wh
        self.time_sec = 0
        
        self.rx_data_total_bytes = 0
        self.tx_data_total_bytes = 0
        self.buffer_history = []
        self.battery_history = []
        self.mode_history = []
    def receive_uplink(self, duration_sec: float, duty_cycle: float = 0.5):
        data_bytes = int(self.config.uplink_rate_bps / 8 * duration_sec * duty_
        
        if self.buffer_fill_bytes + data_bytes > self.config.buffer_size_bytes:
            overflow = (self.buffer_fill_bytes + data_bytes - self.config.buffe
            data_bytes -= overflow
            print(f"⚠️   Buffer overflow! Lost {overflow} bytes")
        
        self.buffer_fill_bytes += data_bytes
        self.rx_data_total_bytes += data_bytes
        



        power_consumed = self.config.rx_power_watts * duration_sec / 3600
        self.battery_level_wh -= power_consumed
        
        self.mode = TransponderMode.RECEIVING
    def transmit_downlink(self, duration_sec: float):
        data_bytes = int(self.config.downlink_rate_bps / 8 * duration_sec)
        
        if data_bytes > self.buffer_fill_bytes:
            data_bytes = self.buffer_fill_bytes
        
        self.buffer_fill_bytes -= data_bytes
        self.tx_data_total_bytes += data_bytes
        
        power_consumed = self.config.tx_power_watts * duration_sec / 3600
        self.battery_level_wh -= power_consumed
        
        self.mode = TransponderMode.TRANSMITTING
    def solar_charge(self, duration_sec: float, illumination: float = 1.0):
        power_gained = (self.config.solar_power_watts * illumination * duration
        self.battery_level_wh = min(self.battery_level_wh + power_gained, self.
    def log_state(self):
        self.buffer_history.append(self.buffer_fill_bytes)
        self.battery_history.append(self.battery_level_wh)
        self.mode_history.append(self.mode.value)
    def simulate_pass(self, pass_duration_sec: float = 600):
        timestep = 10
        
        for t in np.arange(0, pass_duration_sec, timestep):
            self.time_sec = t
            
            if t < pass_duration_sec / 2:
                self.receive_uplink(timestep, duty_cycle=0.6)
                self.solar_charge(timestep, illumination=0.5)
            else:
                if self.buffer_fill_bytes > 0:
                    self.transmit_downlink(timestep)
                else:
                    self.mode = TransponderMode.IDLE
                self.solar_charge(timestep, illumination=0.5)
            
            self.log_state()
            
        return self.get_statistics()
    
    def get_statistics(self):
        compression_ratio = self.config.uplink_rate_bps / self.config.downlink_
        buffer_max_utilization = max(self.buffer_history) / self.config.buffer_
        
        return {
            'compression_ratio': compression_ratio,
            'rx_total_kb': self.rx_data_total_bytes / 1024,
            'tx_total_kb': self.tx_data_total_bytes / 1024,
            'buffer_max_util_%': buffer_max_utilization,
            'battery_end_wh': self.battery_level_wh,
            'battery_used_wh': self.config.battery_capacity_wh - self.battery_l
        }



receive_uplink Class Method

The receive_uplink method simulates how the satellite receives data from ground stations. It

calculates how many bytes of data arrive during a given time period, checks if there's room

in the buffer to store them, and keeps track of power consumption. If the buffer fills up,

excess data is lost. When we lose data, we call it an overflow.

The inputs, or arguments, to receive_uplink are the DynamicTransponder object itself

(called "self"), a duration in seconds, and a duty cycle.

The first thing we do is find out how many bytes were transmitted. Ground stations transmit

at a fixed bit rate. For example, 9600 bits per second. This is defined in the

DynamicTransponder object, which we know as "self". The transmitted bit rate is one of

those values that was passed in to the DynamicTransponder object from the Configuration

dataclass. Specifically, our bit rate is self.config.uplink_rate_bps. The receive_uplink

method calculates how many bytes arrive at the satellite during the specified duration,

accounting for a duty cycle, which is the percentage of time the ground station is actually

transmitting.

The second thing we do is check the available buffer space and add the incoming data. If,

after we add the incoming data to the buffer, the result is larger than the size of the buger,

then we have an overflow conditions. We report how many bytes were lost. The received

data is stored in this buffer until it is retransmitted. We update the number of bytes in our

buffer and we update hte number of total bytes that have been transmitted to the satellite.

Receiving consumes power from the satellite's battery. The method then deducts energy

based on receiver power draw and how long it took to receive.

We then use our enumeration class to set our mode to RECEIVING.

transmit_downlink Class Method

The transmit_downlink method simulates how the satellite transmits data back down to

ground stations. It calculates how many bytes can be sent during a given time period at the

slower downlink rate, removes that data from the buffer, and tracks the power consumption

of the transmitter.

The satellite transmits at a slower bit rate than it receives. For example, we might have a

20,000 bps downlink vs 54,200 bps uplink. Once we know how many bytes we're

transmitting on the downlink, we can update the buffer. The method checks available buffer

contents and transmits only what's available. We can't send what we don't have. We update

our power consumption. Transmitting consumes more power than receiving, typically. The

method deducts energy based on transmitter power draw and transmission duration. This

allows us to trade buffer space for power efficiency in order to optimize uplink and downlink

bit rates. We then set the state to TRANSMITTING.



solar_charge Class Method

solar_charge calculates the power we get from sunlight on our solar cells. We consume

power with receiving and transmitting, and we gain power from solar charging.

The solar_charge method simulates solar panel energy collection. It calculates how much

power the panels generate during a time period, scaled by an 'illumination' factor (0.0 =

total darkness, 1.0 = full sun). The battery is recharged up to its maximum capacity, but

never beyond.

This is a very simple model. There are no orbital mechanics, no eclipse calculations, no

Earth shadow geometry, no sun angle (would result in cosine losses), no seasonal

variations, and no panel degradations.

So, how can we use this method effectively?

We can calculate illumination based on orbital position.

*Example 1: Simple LEO orbit approximation*

orbit_period_min = 97  # ~500 km altitude
eclipse_fraction = 0.35  # ~35% of orbit in shadow

for t in timesteps:
    # Determine if in eclipse based on orbit position
    orbit_phase = (t % (orbit_period_min * 60)) / 
(orbit_period_min * 60)

    if orbit_phase < eclipse_fraction:
        # In Earth's shadow
        transponder.solar_charge(timestep, illumination=0.0)
    else:
        # In sunlight
        transponder.solar_charge(timestep, illumination=1.0)

We can use an average illumination over many orbits. This is a rough estimate, but gets us in

the ball park.

*Example 2: Average the Illumination and use that as the 
Illumination Parameter*

# LEO satellite: ~35% eclipse, ~65% sun
average_illumination = 0.65

# But also account for sun angle (not always perpendicular)
# Add cosine losses and panel orientation
effective_illumination = 0.65 * 0.7  # ~45% effective



transponder.solar_charge(duration_sec=600, illumination=0.45)

log_state Class Method

log_state updates our buffer, battery, and mode histories. When we append, we add the

most recent value to the list. This creates a record over time of the analysis so that we can

find patterns, bottlenecks, saturations, or failed optimizatinos. It simply takes the current

number of bytes in the buffer, current battery level, and current mode state and appends

them to the logs for each value. The logs are used to make visualizations.

simulate_pass Class Method

This is what is known as an "orchestrator method". It's the function call that brings

everything together. Many of the other methods are called by this method in order to

simulate a pass over a ground station.

simulate_pass divides the pass into small time steps and alternates between receiving data

during the first half (uplink) and transmitting during the second half (downlink), while solar

panels charge throughout. The default 600 second pass is divided into 10 time steps. We

check if we're in the first half of the pass duration. If we are, then we run the receive_uplink

and solar_charge methods. If we are in the second half of the pass, we check if we have

anything in the buffer than then run the transmit_downlink method. We also run

solar_charge method as well. We log_state and then return a printout of the statistics of the

pass by calling get_statistics. We'll talk about that method next.

get_statistics Class Method

Here is where we report the results of our analysis. We're interested in something we're

calling compression_ratio. This is the ratio between the uplink bit rate and the downlink bit

rate. We also report the maximum utilization of the buffer. Higher uplink data rates fill it

faster. Higher downlink data rates drain it faster. Higher bit rates cost more power. Finally,

we report the ending battery power level and how much power was consumed.

Finding the right balance for the MDT means understanding the trade-offs between bit rate

and power consumption for this particular payload. Once we understand the minimums and

maximums of the aspects under our control, we can develop a set of optimized numbers for

the design. We can also begin to explore an adaptive design. For example, we might lower

the downlink bit rate when the battery has lower capacity. Or, we might set it to a particular

mode during a particular time period, such as an Experimental Day or a Special Event.

Jupyter Lab Notebook Python Analysis



Now that we've defined our members and methods and organized them into classes, we set

up and run an MDT analysis.

Run Simulation

First, we create a TransponderConfig object by calling the dataclass. It doesn't take any

arguments. It returns an object that is composed of the list of all the values we assiged as

configuration variables for a Transponder design.

Second, we create a transponder object by calling DynamicTransponder. It needs a

TransponderConfig object, and we provide the one we just made.

Finally, we call our transponder method simulate_pass. We set the pass duration as 600

seconds. We collect the dictionary of results returned by get_statistics in a variable called

stats. A dictionary is a data structure that stores the value in key-value pairs. We fetch the

value by calling out the key. This lets us share the results to both humans and other Python

coding structures more easily that if we were sharing a bunch of variable names.

In [18]: # Run simulation
config = TransponderConfig()
transponder = DynamicTransponder(config)
stats = transponder.simulate_pass(pass_duration_sec=600)

print("=" * 60)
print("FUNCUBE+ DYNAMIC TRANSPONDER SIMULATION RESULTS")
print("=" * 60)
print(f"Compression Ratio:      {stats['compression_ratio']:.1f}:1")
print(f"Data Received:          {stats['rx_total_kb']:.2f} KB")
print(f"Data Transmitted:       {stats['tx_total_kb']:.2f} KB")
print(f"Buffer Peak Usage:      {stats['buffer_max_util_%']:.1f}%")
print(f"Battery Used:           {stats['battery_used_wh']:.3f} Wh")
print(f"Battery Remaining:      {stats['battery_end_wh']:.2f} Wh")
print("=" * 60)



⚠️   Buffer overflow! Lost 6464 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
⚠️   Buffer overflow! Lost 7200 bytes
============================================================
FUNCUBE+ DYNAMIC TRANSPONDER SIMULATION RESULTS
============================================================
Compression Ratio:      8.0:1
Data Received:          64.00 KB
Data Transmitted:       43.95 KB
Buffer Peak Usage:      100.0%
Battery Used:           0.000 Wh
Battery Remaining:      10.00 Wh
============================================================

Make Visualizations for our Data

The first line creates a 2×2 grid of plots (4 plots total) arranged like a window with four

panes. We are using matplotlib library for data visualization. What we are doing is much like

setting up four blank canvases (subplots) in a grid so we can show four different aspects of

the simulation at once. We are labeling each subplot ax1, ax2, ax3, ax4. Since they now have

individual names, we can assign different content to each one.

fig is the overall figure. It is a container for the individual plots. ax1, ax2, ax3, ax4 are the

four individual plot areas. The double parentheses ((ax1, ax2), (ax3, ax4)) unpack the 2D

array into named variables.

The "2, 2, " arguments in the subplots function mean we want 2 rows and 2 columns for 4

plots total. The "figsize=(14, 10)" argument in the subplots function is the width and height

in inches.

Breaking this down in computer science terms, plt.subplots(2, 2) returns (fig, ndarray([[ax1,

ax2], [ax3, ax4]])). The nested tuple unpacking ((ax1, ax2), (ax3, ax4)) destructures the 2×2

array and provides convenient named access instead of indexing axs[0,0], axs[0,1], etc.



All of the heavy lifting in this first line pays off very quickly as we can reference the

individual plots in a cleaner and more intuitive way.

The second line creates the x-axis for the plots. This represents time. This time axis is then

used as the x-coordinate for all four subplots, ensuring they're all synchronized to the same

timeline. This lets us compare different values across the same time period and at the same

time points.

Buffer Fill Over Time

We plot the values from the buffer_history log against the time axis. We were tracking the

number of bytes. We divide the values of the buffer by 1024 to show kilobytes on the graph.

We put in some labels for x and y values and add a title. We turn on a grid but make it

unobtrusive by setting the alpha to 0.3. This lowers the contrast between the lines of the

grid and the background of the plot. The instruction

ax1.axhline(y=config.buffer_size_bytes/1024, color='r', linestyle='--', label='Max Capacity')

draws a horizontal line across the entire plot at a specific y-value. We want to indicate what

the maximum buffer size is for this particular analysis run, and this line is how we do that.

The last instruction tells matplotlib that we'd like a legend for our plot.

Battery Level Over Time

Very similar to Buffer Fill Over Time, we plot the values from the battery_history log against

the time axis. We also have a horizontal line, similar to the Max Capacity line above. In this

case, we have a Critical (low) Level horizontal line. This lets us see right away if our battery

level gets too low for the current analysis.

Mode Timeline Visualizes States Over Time

This creates a timeline visualization showing which mode the transponder was in at each

moment. Using this visualization we can verify expected behavior.

transponder.mode_history is a list. For example, [1, 1, 1, 3, 3, 3, 4, 4, 
etc.] Each number represents the mode during one 10-second timestep. 1=RX,

2=BUFFER, 3=TX, 4=IDLE

We create two small dictionaries, mode_colors and mode_names. The first one is the colors

we are going to use for each of our four modes. The second dictionary has shorthand

display names for the modes. We'll be using mode_names in the plot legend. Both have

keys that are integers. If we use a loop with integers, then we can loop through the

dictionary values. The dictionaries are synchronized. The key of 1 gives the color that

corresponds to the name.

And, we do indeed have a loop.



For each timestep, the loop draws a horizontal bar. barh(0, ...)  draws at y=0. All bars

are on the same horizontal line. 10  sets the bar width at 10 seconds. left=i*10  starts

the bar at time i*10  Timestep 0 starts at 0s, timestep 1 starts at 10s, etc.

color=mode_colors[mode]  sets the color of the bar based on the mode (blue for RX,

red for TX, etc.)

The result is a horizontal colored timeline showing mode transitions.

We set the x axis label to Time (seconds). Then we set_yticks with an argument of ([]). This

instruction removes the y-axis tick marks. Since y-position is meaningless here, and we are

not showing any quantitiative y values, we do this to clear some visual clutter. We then set

the title. Finally, we put a limit on the x axis values to equal the maximum value of time_axis.

Now we come to the legend. Here's where it gets interesting. In ax3, the loop creates 60

individual bars (one per timestep). If we just called ax3.legend(), then matplotlib would try to

create a legend entry for every single bar. This would be 60 entries and would be mostly

duplicates (RX, RX, RX, TX, TX, TX...).

What we actually want is one legend entry per mode type, showing its color. We manually

create these entries using list comprehension.

First, we import Patch from matplotlib. Patch is a class that creates generic colored shape

objects. Matplotlib will render these as colored squares in the legend. This is exactly what

we need.

pythonlegend_elements = [Patch(facecolor=color, alpha=0.7, 
label=mode_names[mode_id]) for mode_id, color in mode_colors.items()]

Breaking this down.

mode_colors.items()  returns key-value pairs from the dictionary. [(1, 'blue'), 
(2, 'yellow'), (3, 'red'), (4, 'gray')]

The loop then iterates through these pairs. Iteration 1 is mode_id=1, color='blue'.

We then look up the name. mode_names[1] returns 'RX'. We create a blue patch with an RX

label with Patch(facecolor='blue', alpha=0.7, label='RX')

Iteration 2 is mode_id=2, color='yellow'.

We look up the name. mode_names[2] returns 'BUFFER'. We create a yellow patch with a

BUFFER label with Patch(facecolor='yellow', alpha=0.7, label='BUFFER')

Iteration 3 is mode_id=3, color='red'. We look up the name. mode_names[3] returns 'TX'.

We create a red patch with a TX label with Patch(facecolor='red', alpha=0.7, 
label='TX')

Iteration 4 is mode_id=4, color='gray'. We look up the name. mode_names[4] returns 'IDLE'.

We create a gray patch with an IDLE label with Patch(facecolor='gray', alpha=0.7, 



label='IDLE')

We loop through mode_colors to get both the mode number and its color, then use that

mode number as a key to look up the corresponding name in mode_names. This pairs up

the color and name for each mode, so that we can make a list of colored patches. The result

is legend_elements, which is a list of 4 Patch objects, ready to display as our legend.

Finally, pythonax3.legend(handles=legend_elements, loc='upper right')  tells

matplotlib "use these specific patches for the legend" instead of trying to auto-generate

from the 60 bars.

We're using the mode number (1, 2, 3, 4) as the "glue" that connects colors to names

across two separate dictionaries.

If a picture is worth a thousand words, then it shouldn't be surprising that creating the

picture can often be more involved than the math of the model itself.

Data Flow Rate Visualization

This subplot visualizes the total data transferred over time, showing how the asymmetric

uplink/downlink rates affect the satellite pass.

Think of this visualization as a Dungeons and Dragons party. They are looting a dungeon.

cumulative_rx tracks the total gold collected room-by-room (fast collection rate when

actively looting, zero when not). cumulative_tx tracks total gold carried out of the dungeon

(slower rate, can only happen when the party is leaving). The cumulative sum is your

running total wealth over time. A powerful party can collect a lot more gold in a day than

they can carry out.

We plot both cumulative curves. The blue line is fast uplink data accumulation. We expect to

see a steep slope during RX mode. The red line is the slow downlink data transmission. We

expect to see a gentle slope during TX mode. We know that this mode will be asymmetric,

or unbalanced. We're carrying out this analysis to optimize the difference in rates in order to

ensure the communications channel is useful for the operators. Data comes in fast but goes

out slow. The gap between the lines in the graph represents data still in the buffer.

Finally, we add labels, title, legend, and a subtle grid. An alpha=0.3 makes it less obtrusive.

plt.tight_layout() automatically adjusts spacing to prevent overlapping labels across all four

subplots.

Save the Plots to Current Directory

We use the savefig function to save the entire figure to the current directory. We specify a

dots per inch of 150. We then call show() to display the plots to the current display.

In [19]: # Visualization
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10))



✓ Simulation plot saved to current directory

time_axis = np.arange(len(transponder.buffer_history)) * 10

# Buffer fill over time
ax1.plot(time_axis, np.array(transponder.buffer_history) / 1024, 'b-', linewidt
ax1.set_xlabel('Time (seconds)')
ax1.set_ylabel('Buffer Fill (KB)')
ax1.set_title('Transponder Buffer Utilization')
ax1.grid(True, alpha=0.3)
ax1.axhline(y=config.buffer_size_bytes/1024, color='r', linestyle='--', label='
ax1.legend()

# Battery level over time
ax2.plot(time_axis, transponder.battery_history, 'g-', linewidth=2)
ax2.set_xlabel('Time (seconds)')
ax2.set_ylabel('Battery Level (Wh)')
ax2.set_title('Battery State During Pass')
ax2.grid(True, alpha=0.3)
ax2.axhline(y=config.battery_capacity_wh * 0.2, color='r', linestyle='--', labe
ax2.legend()

# Mode timeline
mode_colors = {1: 'blue', 2: 'yellow', 3: 'red', 4: 'gray'}
mode_names = {1: 'RX', 2: 'BUFFER', 3: 'TX', 4: 'IDLE'}
for i, current_mode in enumerate(transponder.mode_history):
    ax3.barh(0, 10, left=i*10, color=mode_colors[current_mode], alpha=0.7, heig
ax3.set_xlabel('Time (seconds)')
ax3.set_yticks([])
ax3.set_title('Transponder Operating Mode')
ax3.set_xlim(0, max(time_axis))

from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=color, alpha=0.7, label=mode_names[mode_id])
ax3.legend(handles=legend_elements, loc='upper right');

# Data flow rates
cumulative_rx = np.cumsum([transponder.config.uplink_rate_bps / 8 * 10 if m == 
cumulative_tx = np.cumsum([transponder.config.downlink_rate_bps / 8 * 10 if m =
ax4.plot(time_axis, cumulative_rx, 'b-', linewidth=2, label='Uplink (fast)')
ax4.plot(time_axis, cumulative_tx, 'r-', linewidth=2, label='Downlink (slow)')
ax4.set_xlabel('Time (seconds)')
ax4.set_ylabel('Cumulative Data (KB)')
ax4.set_title('Data Transfer Over Pass')
ax4.legend()
ax4.grid(True, alpha=0.3)

plt.tight_layout()

# Save to current directory instead
plt.savefig('funcube_plus_simulation.png', dpi=150)
print("\n✓ Simulation plot saved to current directory")
plt.show()




