Finding Optimal Synchronization Words for
Digital Voice Protocols

An Exhaustive Search Yields Substantial Improvement Over Classical

Sequences for Opulent Voice Protocol from Open Research Institute

By Michelle Thompson W5NYV

Abstract

Synchronization word selection is critical for reliable frame detection in digital communications
protocols. While classical sequences like Barker codes are well-known for their autocorrelation
properties, are they truly optimal for arbitrary lengths? This article presents a computational
approach to finding optimal 24-bit synchronization sequences, achieving a Peak Sidelobe-to-
Mainlobe Ratio (PSLR) of 8:1. This is 2.67 times better than concatenated Barker codes. We
demonstrate that exhaustive search is feasible for moderate-length sequences. Does a much
better PSLR translate to better performance improvements over traditional approaches? The
answer depends on how you implement your sync word detector.

Introduction

In digital communications systems, synchronization words (sync words) are bit patterns decided
upon and known in advance that mark the beginning of data frames. Receivers correlate, or
match, the incoming bitstream against these expected sync words in order to detect frame
boundaries. The quality of a sync word is characterized by its autocorrelation properties. Good
autocorrelation means that we get a strong bit-to-bit match, or peak number of matching bits,
when we exactly align our known sequence with the matching sequence in the incoming bit
stream, and we don’t get much correlation when it’s not aligned exactly.

For example, if we are looking for a sequence, like 11111, and we compare it to our record of
what we are looking for (also 11111), then we get the maximum number of 5 matches when it’s
perfectly lined up. This is what we call the main lobe. But, there’s more to the story. We want
weak responses at all of the other offsets of the known word to the word in the bitstream. Look
again at 11111. We are shifting in our received bitstream one bit at a time, and moving it “past”
the known word. So with one bit overlap we have one match. With two bits overlap we have two
matches. With three we have three, and with four we have four. Then we get the maximum,
which is five of five. Now we start shifting it away, and we get four, then three, then two, then
one. In order to use this as a sync word, we’d have to insist on five matches to claim that we have
things lined up. If there was any noise in our signal, and there is always noise, then the values
that we receive over the air might cause some of these numbers to change, and we might get a

false alarm. The number of matches when a sync word is at any other offset other than perfectly
lined up are very important to us. Those numbers of matches at all the other offsets are called
side lobes. Just like in radio signals, we want a strong main lobe and smallest possible side lobes.
We need to suppress our side lobes. 11111 does not have good autocorrelation.

The Challenge

For the Opulent Voice digital voice protocol, we needed a 24-bit synchronization word. The
protocol operates most-significant-bit (MSB) first and requires excellent autocorrelation
properties to maintain reliable frame synchronization in challenging propagation conditions. Our
initial approach was to use the best sequences that we knew about, which are from a family of
binary sequences called Barker codes. But, there are no 24 bit Barker codes. The longest Barker
code is 16 bits. Therefore, we picked an 11 bit code and a 13 bit code and we stuck them
together. This concatenated code seemed entirely reasonable given Barker codes' reputation for
optimal autocorrelation properties. But was this truly the best we could do?

Background: Barker Codes and Beyond

What Are Barker Codes?

Barker codes are binary sequences with near-perfect autocorrelation properties. They were
discovered by R.H. Barker in 1953. For a Barker code of length N bits, the autocorrelation side
lobes are at most one bit. Compare that to the 11111 example above, where the max side lobe
was four bits in the five bit code. Only 13 Barker codes are known to exist, with the longest
being length 13. For arbitrary lengths like 24 bits, no Barker code exists. A common approach if
you need something longer than 13 bits is to concatenate two shorter Barker codes, so that the
total number adds up to the number of bits you need.

The PSLR Metric
We use Peak Sidelobe-to-Mainlobe Ratio (PSLR) to quantify sync word quality.

PSLR = Main Lobe / Peak Sidelobe

This is similar to the concept of directionality with an antenna. The main lobe value in PSLR is
the autocorrelation result when the sync word has “zero lag”. We slide the received bit stream
past the stored copy of the sync word, and measure how many bits match. Zero lag is the point in
time where the sync word in the received bit stream is perfectly aligned with the copy of the sync
word we’re looking for. Peak side lobe is the maximum value of the autocorrelation at any non-
zero lag. This is the maximum number of bit matches at all the other offsets before and after
perfect alignment. For our 11111 example, the main lobe was 5 and the peak side lobe was 4, for
a PSLR of 5/4.

Higher PSLR indicates better discrimination between true sync and false detections. In the

bipolar representation used for signal processing analysis (where we use 1 and -1 instead of
binary 1 and 0) the autocorrelation is computed as:

R(T) = X s(i) x s(i+T)

In the Opulent Voice digital hardware implementation, the equivalent operation uses binary
representation with logical operations to count bit matches. Bipolar or binary give the same
results. Bipolar is traditional to use in signal processing, and binary is used in our Opulent Voice
hardware descriptive language implementations. This choice, to match the demodulated bits,
turns out to be an important one. Improving the sync word without improving the method of
detection means that the increased quality of the sync word doesn’t immediately translate to
better performance.

Alternative Sequences Considered

Before resorting to an exhaustive search, we evaluated several classical approaches:

1. Single Barker Codes The longest Barker code (length 13) is too short for our 24-bit
requirement. Padding with zeros destroys the autocorrelation properties.

2. Concatenated Barker Codes Combining Barker-11 (binary 11100010010) and Barker-13
(binary 1111100110101) yields 24 bits (binary 1110 0010 1111 0011 0101 or hex 0xe25f35).

. PSLR is 3.00:1 (4.7 dB). The main lobe is 24 but the peak side lobe is 8.

The concatenation works reasonably well, but the two constituent codes creates side lobes larger
than the +1 ideal.

3. M-Sequences (Maximal Length Sequences) M-sequences have perfect periodic
autocorrelation properties. All side lobes equal 1 when treated as circular sequences. However,

they only exist at lengths of powers of two minus one (on . 1,s07,15,31,63...). For sync word
detection, we need aperiodic (linear) autocorrelation since we detect the sequence once, not
repeatedly. This is an important distinction, because it’s also why we don’t use a Zadoff-Chu
sequence.

Testing 31-bit m-sequences truncated to 24 bits, the best truncation PSLR: 24:21 (1.2 dB).

The "textbook perfect" periodic property doesn't translate to our one-shot detection scenario and

the length constraint (24 # 2" - 1) forces truncation.

4. Zadoff-Chu Sequences A common question: "Why not use Zadoff-Chu sequences? They
have perfect autocorrelation and are used in LTE/5G!"

Zadoff-Chu sequences are indeed excellent when they are used for their intended application.
However, they're fundamentally mismatched for binary sync words. First, they are complex-

valued (IQ samples) with constant amplitude. Our sync word must be binary. Quantizing Zadoff-
Chu to binary destroys the "perfect" autocorrelation properties.

A 24-bit quantized Zadoff-Chu sequence (root 5) yields only 2.18:1 PSLR with peak side lobe of
11. This is worse than the concatenated Barker code.

Zadoff-Chu sequences have perfect periodic (circular) autocorrelation, assuming the sequence
repeats infinitely. Sync word detection requires aperiodic (linear) correlation. We match the
sequence once in a bitstream, not as a repeating pattern. The "perfect" property doesn't apply to
one-shot detection.

Another issue is that using Zadoff-Chu properly requires complex baseband processing (1/Q),
frequency offset estimation and correction, complex correlation hardware, and magnitude
threshold detection

Our binary approach requires a few logic gates, bit counters, and simple threshold comparison.

Zadoff-Chu sequences are brilliant for orthogonal frequency division modulation (OFDM)
cellular systems with frequency-domain processing and multiple access requirements. For simple
binary sync words in time-domain correlation, exhaustive search of binary sequences provides
better PSLR with far simpler implementation.

5. The M17 Case Study: Sync Word Length Tradeoffs

The M17 digital voice protocol provides an instructive comparison. M17 operates at 9600 bps
and uses 16-bit sync words (versus our 24-bit requirement):

LSF/Stream frames: 0x3243 (digits of m) - PSLR: 2.67:1
Packet frames: OxFF5D - PSLR: 2.00:1
BERT frames: 0xDF55 - PSLR: 2.00:1

Why 16 bits instead of 24? Sync word length is a design tradeoff. Opulent Voice has nearly six
times faster bitrate, so there’s a faster acquisition with 24 bits at the faster bitrate, even though
the sync word is longer. The longer the sync word the higher the main lobe, but 16 bits and 24
bits can achieve the same PSLR. 16 bits has less noise immunity, but can be considered lower
overhead.

A 16-bit sync word is a reasonable choice for VHF/UHF operation where SNR is typically
higher and lower overhead is valuable. However, M17's selection of a sync word without
optimization represents a very big missed opportunity.

What if M17 had optimized their 16-bit sync word?

Exhaustive search of all 65,536 possible 16-bit sequences reveals 80 optimal sequences with
PSLR = 8.00:1 (peak sidelobe = 2). Example: 0x066b.

M17 could have achieved the same 8:1 PSLR as Opulent Voice’s optimal 24-bit sequence, with

zero additional overhead, just by running an exhaustive search on their chosen 16-bit length.

Both M17 (16-bit) and OPV (24-bit) made reasonable length choices for their respective
applications. The mistake isn't the length. It's failing to optimize for the chosen length. The sync
word value was selected from the digits of pi, written out in binary. While irrational numbers
appear to be random, we can see from the m-sequence evaluation above that random or
pseudorandom numbers do not necessarily have good aperiodic autocorrelation at all. It’s just
luck that the PSLR is as high as it is for one of the three sync words. Using randomly selected
"digits of ;" left a lot of performance behind. The packet and BERT sync words have even
higher side lobes than the LSF/Stream words, and lower PSLR. This degrades detection
performance in multi-path environments by quite a bit, even if the signals are strong. VHF and
UHF have multi-path, so this is a real concern.

6. P25 Protocol Case Study

Project 25 (P25) is a suite of standards for digital two-way radio communications widely used by
public safety organizations in North America. Developed through joint efforts of APCO
International, federal agencies, and standardized by the Telecommunications Industry
Association (TIA), P25 Phase 1 represents one of the most mature and widely deployed digital
voice protocols in the public safety sector. P25 Phase 1 operates at 9600 bits per second using
either C4FM (Continuous 4-level FM) or CQPSK (Compatible Quadrature Phase-Shift Keying)
modulation with a symbol rate of 4800 symbols per second.

The P25 protocol uses a 48-bit frame synchronization pattern (a hex value of 0x5575F5FF77FF).
This is sent at the beginning of every message and is then inserted every 180 ms during voice
messages. The purpose of the frame synchronization pattern in P25 is to enable operators to
monitor or join a conversation in progress. This is an important system feature in public safety
use cases. While P25 uses twice as many bits for synchronization as Opulent Voice, it transmits
these 48 bits at 4800 symbols per second. This takes 5 milliseconds to transmit the complete
sync word. Opulent Voice 24-bit sync word transmitted at 54.2 kHz takes approximately 0.44
milliseconds.

P25's design reflects its public safety heritage. The longer sync word and aggressive repetition
prioritize reliability and rapid synchronization over spectral efficiency. The protocol accepts
higher overhead (48 bits every 180 ms) to ensure first responders can reliably join active
transmissions, However, protocols operating at higher data rates (like Opulent Voice at 54.2
kHz) can achieve equivalent time-domain robustness with shorter bit sequences, as a correlation
gain comes from processing bandwidth rather than pattern length alone.

When we analyze for the PSLR of P25, we don’t compare single bits for the sync word analysis
because P25 is not a binary mode. P25 symbols are two bits instead of one bit. P25 receivers
operate at 4800 symbols per second. There are two bits (dibits) per symbol, for a bit rate of 9600
bits per second.

The matched filter or correlator in the receiver processes 24 symbols, not 48 bits.

The dibit pattern looks like this:
+34+3+3434+3-3+3+3-3-3+343-3-3-3-3+3-3+3-3-3-3-3-3
From dibits of:

0101010101110101 1111010111 111111011101 1111111111

Resulting in a PSLR of 3:1 (4.7 dB). This is very reasonable for a manually-designed sync word
from the 1990s.

7. D-Star Protocol Case Study

D-Star (Digital Smart Technologies for Amateur Radio) was one of the first digital voice modes
widely adopted in amateur radio. It was developed by the Japan Amateur Radio League (JARL)
in the late 1990s and early 2000s. D-Star uses GMSK (Gaussian Minimum Shift Keying)
modulation and operates at 4800 bits per second for voice communications.

The D-Star frame structure uses a distinctive synchronization pattern that differs from most other
digital voice protocols in its design philosophy. Rather than a single long sync word, D-Star
employs a composite synchronization approach.

The D-Star sync pattern consists of multiple components. First there is a Frame Start. This is 24
bits consisting of a 10-bit preamble (1010101010) followed by two 7-bit patterns (1101000 +
1101000).

The complete pattern in hexadecimal representation is 0OXAA9A9A.

This gives a 24-bit total synchronization sequence. However, the internal structure reveals the
design choices. The alternating 1010101010 preamble provides bit timing recovery for the
receiver's clock synchronization. Second, it acts as a "warning" that a frame sync pattern is about
to arrive. This is conceptually similar to the Ethernet preamble design. In Opulent Voice, we
have a separate bit-timing preamble frame that is sent once at the beginning of the transmission.
The synchronization words are separate entities that are pre-pended to every frame. D-Star has a
preamble and a frame sync for every frame.

When we analyze the full 24-bit D-Star sync pattern for PSLR we get 2.4:1 (7.6 dB).

This PSLR is lower than both concatenated Barker codes (3:1) and our optimal sequences (8:1).
The performance gap exists because the D-Star sync word was optimized for a different
objective. The repeating 10-bit preamble provides excellent clock recovery characteristics but
introduces substantial autocorrelation side lobes. This represents a conscious tradeoff,
prioritizing robust bit synchronization over optimal frame detection PSLR.

For D-Star's intended application in the early 2000s, this design made practical sense. Receivers
of that era benefited greatly from the explicit bit-timing preamble, and the relatively high SNR of
typical VHF/UHF amateur radio operation meant that the lower PSLR wasn’t a problem.

However, by modern standards and with current DSP capabilities, D-Star could have achieved
better overall performance. A 24-bit optimized sync word (PSLR 8:1) combined with modern
digital clock recovery techniques provides both superior timing synchronization and better frame
detection in challenging multi-path environments. The D-Star case demonstrates that protocol
design reflects the technological constraints and assumptions of its era, and optimization
opportunities often exist when reevaluating older designs with current capabilities.

8. NXDN Protocol Case Study

NXDN is a digital radio protocol jointly developed by Icom and Kenwood (JVC Kenwood) in
the mid-2000s as a competitor to DMR and P25. NXDN uses 4-level FSK (4FSK) modulation
and offers both 4800 bps and 9600 bps variants, with the 4800 bps mode being most common.
Like DMR, NXDN operates within 12.5 kHz or 6.25 kHz channel bandwidth.

NXDN's synchronization strategy is notable for using relatively short sync patterns compared to
other digital voice protocols. According to the NXDN Technical Specifications (TS 1-A), the
Frame Sync Word is specified as 10 symbols (20 bits) rather than the longer patterns used by
DMR (24 symbols/48 bits) or P25 (24 symbols/48 bits).

The NXDN sync pattern differs for various frame types. Conventional voice or data frames get a
20-bit pattern at symbol level (10 symbols of 4FSK). For example, 0OxXCDF5D. However,
NXDN's implementation adds complexity through its use of a Link Information Channel Header
(LICH). The LICH provides additional information about the frame type and call parameters,
and in practice, receivers often use a combination of the Frame Sync Word plus LICH bits for
robust synchronization.

When analyzing NXDN at the symbol level (10 symbols for the Frame Sync Word), the PSLR is
approximately 2.50:1 to 3.00:1, depending on the specific pattern variant. This is comparable to
DMR performance but achieved with fewer symbols.

The shorter sync word in NXDN represents a deliberate design tradeoff. The advantages are
lower overhead (20 bits vs 48 bits for DMR/P25), faster frame acquisition in high-SNR
environments, more payload capacity for voice or data.

There are some disadvantages. NXDN has lower inherent PSLR due to the shorter sequence. The
main lobe can only be equal to the length of the bit sequence. You can’t match more bits than
you have in the word. There is reduced multipath rejection capability because of the lower
PSLR. It has greater sensitivity to channel impairments that are found in the intended
deployment environments.

NXDN compensates for the shorter sync pattern through several mechanisms. First, the protocol
includes the LICH which effectively extends the "sync" functionality across multiple bits.
Second, NXDN systems typically operate in cleaner RF environments (professional and
commercial applications) where the high-SNR assumption holds. Third, the protocol includes
robust forward error correction throughout the frame structure.

Could NXDN have optimized better? The constraint is again the multilevel modulation, and yes,

an exhaustive search is computationally feasible and would likely yield patterns with better
PSLR than the manually selected sequences.

The NXDN case illustrates that sync word length is a system-level design decision. Shorter
patterns reduce overhead and increase data throughput, but at the cost of reduced robustness in
challenging propagation conditions. The optimal choice depends on the expected operating
environment and the receiver's overall detection strategy, including whether additional frame
structure elements like LICH are used to augment synchronization.

9. Yaesu System Fusion (C4FM) Case Study

Yaesu System Fusion, introduced in 2013, represents one of the more recent commercial digital
voice protocol designs in amateur radio. System Fusion uses C4FM (Continuous 4-level FM)
modulation, which is effectively 4FSK. System Fusion operates at 9600 bits per second with a
symbol rate of 4800 symbols per second.

The System Fusion sync word design reflects lessons learned from earlier protocols while
introducing some unique characteristics. According to the Yaesu Digital Specifications and an
analysis of the protocol structure, System Fusion uses a sync pattern encoded as
0xD471C9634D. This is 20 symbols with 2 bits per symbol for a total of 40 bits.

This sync word appears at the beginning of every frame and marks the boundary between frames.
Like DMR and NXDN, System Fusion operates with dibit symbols (4FSK), so the
synchronization analysis must be performed at the symbol level rather than the individual bit
level.

The 40 bit sync pattern in System Fusion represents an intermediate design choice between
NXDN's shorter pattern of 10 symbols and DMR's longer pattern of 24 symbols. When analyzed
as a 20 symbol 4FSK sequence, the autocorrelation properties give a PSLR of 3:1. System
Fusion's sync word choice reflects several design priorities.

First, the protocol strongly emphasizes backwards compatibility with analog FM. The frame
structure must support Automatic Mode Select (AMS) where repeaters automatically detect
whether incoming signals are digital or analog. This influences sync word design because false
detection of sync patterns in analog noise could cause incorrect mode switching. That would be a
very negative experience for an operator.

Second, System Fusion prioritizes voice quality and high-speed data transfer capabilities. The
protocol allocates substantial bandwidth to AMBE+2 voice encoding and supports transmission
of images and GPS data. The sync word overhead must be minimized to maximize payload
capacity for these features.

Third, the protocol includes detailed framing information in the FICH (Frame Information
Channel Header) that immediately follows the sync word. This 200-bit header provides extensive
frame type, mode, and configuration information. The receiver uses both the sync word and
FICH in combination for robust frame detection, partially compensating for the moderate PSLR

of the sync word itself.

Could System Fusion have achieved better performance? Yes, but with caveats. An exhaustive
search would be feasible with a good computer. However, System Fusion's real innovation lies
not in sync word optimization but in its overall system architecture. The combination of AMS,
high-quality voice encoding, integrated data capabilities, and Internet linking through WIRES-X
creates a complicated ecosystem. The sync word is adequate for its role and represents
reasonable engineering given the protocol's broader objectives.

The System Fusion case demonstrates that sync word optimization exists within a larger context
of protocol design. Sometimes "good enough" for the sync word allows engineering resources to
focus on features that provide more significant value to end users. The protocol achieves its goals
effectively, even if the sync word itself could theoretically be improved through exhaustive
optimization.

The Computational Approach

Is Exhaustive Search Feasible?

For 24 bits, the search space contains 224 = 16,777,216 possible sequences. Modern computers
with optimized numerical libraries make this fast and easy. We benchmarked the autocorrelation
computation and put a simple test in the Jupyter lab notebook. The rate was ~175,000 sequences/
second (NumPy on a newer laptop), and total time was ~96 seconds (1.6 minutes). This is a fully
feasible search for ordinary computers.

Search Implementation

The search converts each integer from O to 224—1 into a bipolar sequence, computes its
autocorrelation, and tracks sequences with maximum PSLR.

The bit ordering must match your protocol (most significant bit vs. least significant bit).
Results

The exhaustive search completed in 73 seconds and found 6,864 sequences with optimal PSLR
of 8.00:1, or 18.1 dB.

Some of the top optimal sequences:

V}zll‘;:e PSLR Sigzil(:(be
0x00e564 || 8.00:1 3
0x7006ca || 8.00:1 3

lox26gh00ll & 00-1 I 3 I

0x2e9¢80 || 8.00:1 3
0x3c9a80 || 8.00:1 3

All optimal sequences share the same peak side lobe magnitude of 3, compared to 8 for the
concatenated Barker code.

Analysis and Verification

Sequence PSLR I;(Sillgl SiEZ?(i(be Peﬁ'f)l:rtri;flce
Concatenated Barker (0xe25f35) 3.00:1])] 9.5dB 8 Baseline, ok
Best m-sequence truncation 1.14:1|[1.2dB 21 Really bad
Optimal (0x7006ca) 8.00:1([18.1 dB 3 Really good

Autocorrelation Visualization

Figure 1 shows the autocorrelation functions for the three sequence types. The optimal sequence
exhibits sharp main lobe at lag O (amplitude 24), suppressed side lobes (maximum +3 in bipolar
format), and a symmetric structure.

The improvement is dramatic: peak side lobes were reduced from +8 to +3, while maintaining
the same 24-bit length and full main lobe amplitude.

Figure 1 three_way_autocorrelation_comparison.png

10

Best Truncated m-seq (offset=0) - PSLR = 1.14:1

[] Peak SL magnitude = 21
20 A
) [‘ [[{ { ‘ [
é 0 ,9?TTTT[IW[[IIIITTTTQ,
s é [}
E
~104
=20
-20 -10 0 10 20
Lag
Concatenated Barker (11+13) - PSLR = 3.00:1
2 [] Peak SL magnitude = 8
20 A
15 4
g 10 4
ol 2,0 9-T eT ot . . . - %4 . T-v °,°
l l& l ll 61& ¢ ¢ 616 ll l 61 l
54
-20 -10 0 10 20
Lag
Optimal from Exhaustive Search (0x2b8db) - PSLR = 8.00:1
25 ° Peak SL magnitude = 3
20 4
. 15 4
g 10
5
: Totl 1 teteletet 1 Tt1
I I CIT [T

-20 -10 0 10
Lag

Practical Considerations

11

20

Implementation in Digital Hardware

While our analysis uses bipolar (+1) representation for mathematical convenience, hardware
implementation typically uses binary logic with XOR operations. See the current implementation
of sync word frame detection here: https://raw.githubusercontent.com/OpenResearchlnstitute/
pluto_msk/refs/heads/main/src/frame_sync_detector.vhd

Choosing a Detection Threshold

With PSLR = 8:1 and peak side lobe = 3, we can tolerate up to 3 bit errors while maintaining
reliable sync detection at the bit level. This is using Hamming Distance as a function. Hamming
Distance is the number of positions in a sequence that differs from another sequence we are
comparing it to. For example, 11111 compared to 11001 has a Hamming Distance of 2.

A Hamming Distance of 3 means that 3 out of the 24 bits might be in error. We want to ensure
detection even in this case of three errors. The sync word is not protected by forward error
protection, as it is added after the payload is processed through randomization, forward error
correction, and interleaving.

Errors (| Correlation Detection
0 24 Strong
1 22 Strong
2 20 Strong
3 18 Practical limit
4+ <16 Risk of false detection

A threshold of 18 (Hamming distance < 3) provides robust operation while minimizing false
positives.

Which Optimal Sequence to Choose?

With 6,864 optimal sequences available, selection criteria include:

DC balance: Choose sequences with as equal numbers of Os and 1s as possible

Run length: Try to avoid long strings of consecutive identical bits to relieve pressure on the
tracking loops

Spectrum: Sequences with more transitions help some modulations in terms of detection
Aesthetics: Round hex values are easier to remember and type

For Opulent Voice, we selected 0x02b8db. It’s got ideal PSLR of 8:1, very low DC bias with 11

ones and 13 zeros, and a maximum run of 6 zeros in a row. These are good values, and the
mnemonic can be “oh to be eight db”.

12

https://raw.githubusercontent.com/OpenResearchInstitute/pluto_msk/refs/heads/main/src/frame_sync_detector.vhd
https://raw.githubusercontent.com/OpenResearchInstitute/pluto_msk/refs/heads/main/src/frame_sync_detector.vhd

Performance

Better PSLR provides better performance in two situations.

First, with multi-path conditions. Terrestrial features cause a particular type of interference
where delayed copies of the signal arrive at the receiver. These echoes are from reflecting off of
surfaces and taking longer paths than the line of sight transmission. Delayed copies of signals
can destructively add and attenuate a signal. Worst case, they can largely cancel it out. VHF,
UHF, and microwave communications systems quite often have to deal with multi-path, and
many techniques have been developed to mitigate the damage. The better PSLR sync word, the
better the multi-path performance. We show our optimal sync word compared to the
concatenated Barker code using Hamming Distance sync detection. We vary the multi-path from

none to severe.

Figure 2 hamming_detection_all_conditions.png

Optimal (8:1 PSLR)

Barker (3:1 PSLR)
Hamming Distance (VHDL)

Hamming Distance (VHDL)

1.0 /,‘--«.'--;-’:-,-an——o—-::z 1.0 /"‘,..'.'.:‘,‘::.-:-g_;-.-o-:-:-:w_-.n-—q
K - - / R d
- . oA -~
s P g -
0.8 e e 0.8 -~ Xd ke
4 e R s
/ . K4 7
] /./ s
/
0.6 7 0.6 Va
e /

0.4

N
Probability of Detection

Probability of Detection
o
=

—e— AWGN only
—o— Weak (10%, 8-bit delay)

- - Moderate (30%, 12-bit delay)
—e - Strong (50%, 12-bit delay)
—e - Severe (70%, 12-bit delay)

—e— AWGN only 0.2
—e— Weak (10%, 8-bit delay)

- Moderate (30%, 12-bit delay)
—e - Strong (50%, 12-bit delay)
—e - Severe (70%, 12-bit delay)

0.2

0.0
-2 0 2 4 6 8 10 12 -2 0 2 4 6

SNR (dB) SNR (dB)

0.0
8 10 12

Second, if a correlator is used instead of a Hamming Distance calculator. If we use the more
advanced correlation technique, then we see a performance improvement.

Figure 3 correlation_detection_all_conditions.png

13

Optimal (8:1 PSLR)

Barker (3:1 PSLR)
Correlation Detection

Correlation Detection

14
@

0.8

°
S
\

°

>

S

IS
14
=

Probability of Detection
}
\
4
|
o
\
Probability of Detection

0.2 { —— AWGN only

- Weak (10%, 8-bit delay)
- Moderate (30%, 12-bit delay)
—e strong (50%, 12-bit delay)
—e - Severe (70%, 12-bit delay)

-2 0 2 4 6 8 10 12
SNR (dB)

0.2{ —e— AWGN only

Weak (10%, 8-bit delay)
- Moderate (30%, 12-bit delay)
—e - Strong (50%, 12-bit delay)
—o - Severe (70%, 12-bit delay)

0.0

0.0
-2 0 2 4 6 8 10 12

SNR (dB)

Setting an optimized sync word in the protocol makes Opulent Voice future-proof. Multi-path
performance significantly improves regardless of whether implementations use a Hamming
Distance or a correlator to detect the sync word. If a correlator is used instead of a Hamming
Distance calculation, then both classical concatenated Barker code and the optimal code have a
significant performance improvement in additive white Gaussian noise (AWGN). The optimal
sync word has a slight performance edge in very low SNR conditions. Higher PSLR doesn’t give
us much traction against AWGN. We check against AWGN to make sure we don’t lose
performance compared to other sequences. PSLR gives a substantial increase in performance
when it comes to multi-path, and using a correlator improves both concatenated Barker and

optimal sync word performance.

Figure 4 side_by_side_comparison.png

14

Hamming Distance (VHDL) - AWGN Correlation Detection - AWGN

1.0 _g—t————= ——————3 L0 -~

v =

0.8 / 0.8
8 S
$ g
£ 06 g 0.6
o [s]
S ‘s
2 z
3) 3
? ?
804 g 04
T I

0.2 $ 0.2

—e— Barker 3:1 —e— Barker 3:1
Optimal 8:1 Optimal 8:1
0.0 0.0
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
SNR (dB) SNR (dB)
Distance (VHDL) - 50% Multipath Correlation Detection - 50% Multipath
1.0 —_— IO R »

0.8 0.8

o

EY
o
EY

14

IS
o
IS

Probability of Detection
Probability of Detection

0.2 0.2

—e— Barker 3:1 —o— Barker 3:1
Optimal 8:1 Optimal 8:1
0.0 0.0
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
SNR (dB) SNR (dB)

Lessons Learned

1. "Textbook Perfect" Isn't Always Practical

M-sequences and Zadoff-Chu are famous for their perfect autocorrelation properties, but this
applies to periodic correlation in circular systems (like CDMA). For one-shot sync detection
(aperiodic correlation), m-sequences offer no special advantage and are constrained to specific
lengths, and Zadoff-Chu offers no special advantage and only works for complex samples.
Concatenated Barker codes have drawbacks when it comes to multi-path.

2. Exhaustive Search is Underutilized
For moderate-length sequences, exhaustive search is entirely practical with modern computers. It

guarantees finding the global optimum and eliminates guesswork about whether better sequences
exist.

3. Classical Sequences Are Not Optimal for Arbitrary Lengths

15

While Barker codes are optimal for their specific lengths, extending them to arbitrary lengths
through concatenation or truncation doesn’t mean they’re optimized for the new length. For
custom lengths, dedicated optimization yields real improvements.

4. Bit Ordering Matters

Implementation must carefully match the bit ordering used during optimization. Our MSB-first
protocol required specific code changes to ensure the hex value matched the transmitted
sequence.

5. Symbol Rate Matters

Always analyze sync words at the level they were designed for. For binary PSK or MSK, analyze
bits. For QPSK or 4-ary FSK, if the sync word is defined and transmitted at the symbol rate
(dibits for P25), then analyze it at that symbol rate. For 8-ary PSK, if the sync word is defined at
the symbol rate, then analyze tribits. And, so on, up the modulation order. If the sync word is
defined at the demodulated bit level, then analyze it there.

Conclusion

This work demonstrates that exhaustive computational search can be done to provide optimized
synchronization words that can outperform classical sequences in current and future designs. For
the Opulent Voice protocol's 24-bit requirement, we achieved an 8:1 PSLR, which was
substantially better than concatenated Barker codes and much better than truncated m-sequences.

The methodology was straightforward. We defined the search space (all 2" sequences). We
computed PSLR for each sequence. We selected from the list of all optimal sequences based on
practical criteria, including spectral performance and prioritizing more frequent transitions over
long runs of zeros or ones in the sequence in order to improve tracking loop behavior.

For sequence lengths up to 32 bits, this approach is entirely practical on modern computers and
guarantees finding the global optimum. The resulting sequences provide significantly better
performance than classical alternatives against multi-path and when using correlators in the
receiver. Don’t assume arbitrarily picked or classical sequences are optimal. Run exhaustive
searches, verify independently using different implementations, understand where you are going
to see performance wins, document the bit ordering clearly, and test in hardware to confirm that
the correlation properties transfer correctly.

The code for this analysis is available at https://github.com/OpenResearchlnstitute/interlocutor/
blob/main/OPV_sync_word_study.ipynb and can be adapted for other sequence lengths and
design constraints. All images in this article are from this Jupyter notebook.

Acknowledgments

16

https://github.com/OpenResearchInstitute/interlocutor/blob/main/OPV_sync_word_study.ipynb
https://github.com/OpenResearchInstitute/interlocutor/blob/main/OPV_sync_word_study.ipynb

Thank you to the amateur radio digital voice community for feedback on sync word selection,
and to Matthew Wishek, Paul Williamson, Anshul Makkar, Jonathan Naylor, Wally Ritchie
(SK), and Frank Brickle (SK) for helpful discussions about Opulent Voice protocol work.

References

Barker, R.H. "Group Synchronization of Binary Digital Systems." Communication Theory,
Academic Press, 1953.

Golomb, S.W., and Gong, G. "Signal Design for Good Correlation: For Wireless
Communication, Cryptography, and Radar." Cambridge University Press, 2005.

Sarwate, D.V., and Pursley, M.B. "Crosscorrelation Properties of Pseudorandom and Related
Sequences." Proceedings of the IEEE, vol. 68, no. 5, May 1980.

Skolnik, M.I. "Introduction to Radar Systems," 3rd Edition. McGraw-Hill, 2001. (Chapter on
pulse compression and correlation is excellent)

Levanon, N., and Mozeson, E. "Radar Signals." Wiley-IEEE Press, 2004.
Ipatov, V. "Spread Spectrum and CDMA: Principles and Applications." Wiley, 2005.

Opulent Voice Protocol specification https://github.com/OpenResearchlnstitute/interlocutor/blob/
main/opulent_voice_protocol.md

TIA-102.BAAA-A, "Project 25 FDMA - Common Air Interface"
Daniels Electronics Ltd., "P25 Radio Systems Training Guide," TG-001, 2004
RadioReference.com P25 technical discussions and decoder analysis

APCO International, Project 25 Standards Documentation

About the Author

Michelle Thompson W5SNYV @arrl.net is an electrical engineer and amateur radio operator
specializing in digital communications. She holds an MSEE in Information Theory from USC
and has contributed to a wide variety of open source digital radio projects and amateur radio
organizations.

17

https://github.com/OpenResearchInstitute/interlocutor/blob/main/opulent_voice_protocol.md
https://github.com/OpenResearchInstitute/interlocutor/blob/main/opulent_voice_protocol.md

